Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (4): 269-273    DOI: 10.11901/1005.3093.2013.719
Current Issue | Archive | Adv Search |
Microstructure Formation in a Continuously Solidified Al-Pb Alloy in a Static Magnetic Field
Haili LI1,Jiuzhou ZHAO2,**()
1. China Department of Material Engineering Invention Examination, Patent Examination Cooperation Center of the Patent Office, SIPO, Beijing 102208
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Haili LI,Jiuzhou ZHAO. Microstructure Formation in a Continuously Solidified Al-Pb Alloy in a Static Magnetic Field. Chinese Journal of Materials Research, 2014, 28(4): 269-273.

Download:  HTML  PDF(1761KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Monotectic Al-Pb alloy melts were continuously solidified in a static magnetic field. Samples with well dispersed microstructure were obtained. The average size of the Pb-rich particles decreases with the increase of the magnetic field intensity. Theoretical analyses demonstrate that a static magnetic field causes an increase of the effective viscosity of the melts, and a decrease of the moving velocity of droplets of the precipitated phase and the convective flow of the matrix melt, therefore promotes the formation of the well dispersed solidification microstructure.

Key words:  metallic materials      Al-Pb alloy      solidification      magnetic field      effect     
Received:  29 September 2013     

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.719     OR     https://www.cjmr.org/EN/Y2014/V28/I4/269

Fig.1  Schematic of the directional solidification setup
Fig.2  Microstructures of the Al-5%Pb alloys solidified at the rate of 5 mm/s in static magnetic fields of different strengths. (a) 0 T, (b) 0.3 T, (c) 0.6 T
Fig.3  Average radius of Pb- rich particles formed during the liquid- liquid decomposition in Al- 5%Pb alloy solidified at the rate of 5 mm/s versus the magnetic field strengths
Fig.4  Temperature profile in front of the solidification interface for the sample solidified at the rate of 5 mm/s
Fig.5  Variation of Stokes and Marangoni velocities of the minority phase droplets in front of the solidification interface with the diameter of the minority phase droplets
Fig.6  Schematic illustration of the flow pattern, eddy current and Lorentz force when a droplet moves in the alloy melt
Fig.7  Relationship between the Hartman number of the minority phase droplets and effective viscosity of the melt and the diameter of the minority phase droplets in the magnetic field of 0.3 T. Ham and Had are the Hartman number of the melt and the minority phase droplets, respectively. η 0 m and η 0 β are the viscosity of the melt and minority phase droplets in the magnetic field of 0 T, respectively
Fig.8  Relationship between the velocities of the minority phase droplets in front of the solidification interface and the diameter of the minority phase droplets in static magnetic fields. u S B and u S0 are the Stokes velocity of the minority phase droplets in the magnetic field of 0 and 0.3 T, respectively. u M B and u M0 are the Marangoni velocity of the minority phase droplets in the magnetic field of 0 and 0.3 T, respectively
Fig.9  Relationship curve between the velocities of the minority phase droplets in front of the solidification interface and the diameter of the samples in static magnetic fields of 0.3 T
1 A. Inoue, N. Yano,Microstructure and superconducting properties of melt quenched insoluble Al-Pb and Al-Pb-Bi alloys, J. Mater. Sci., 22(1), 123(1987)
2 J. Wecker, R. Hehnolt, L. Schulta, K. Samwer,Giant magnetoresistanee in melt spun Cu-Co alloys, Appl. Phys. Lett., 52, 1985(1993)
3 LIU Yuan,GUO Jingjie, JIA Jun,The mechanism of the liquid-liquid phase segregation for monotectic alloy and the preparation methods of homogeneous monotectic Alloy, Foundry, 49(1), 11(2000)
3 (刘 源, 郭景杰, 贾 均, 偏晶合金液-液相分离机制和均质偏晶合金的制备方法, 铸造, 49(1), 11(2000))
4 C. D. Cao, B. B. Wei,Microstructure evolution of Cu-Pb monotectic alloys processed in drop tube, J. Mater. Sci. Technol., 18(1), 73(2002)
5 ZHANG Lin,WANG Engang, ZUO Xiaowei, HAO Jicheng, Effect of high magnetic field on solidified structure of Cu-80%Pb hypermonotectic alloy, Acta Metallurgica Sinica, 44(2), 165(2008)
5 (张 林, 王恩刚, 左小伟, 赫冀成,强磁场对Cu-80%Pb过偏晶合金凝固组织的影响, 金属学报, 44(2), 165(2008))
6 H. Yasuda, I. Ohnaka, S. Fujimoto,Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field, Scr. Mater., 54(5), 527(2006)
7 H. Yasuda, I. Ohnaka, O. Kawakami,Effect of magnetic field on solidification in Cu-Pb monotectic alloys, ISIJ Int., 43(6), 942(2003)
8 H. L. Li, J. Z. Zhao, Q. X. Zhang,Microstructure formation in a directionally solidified immiscible alloy, Metall. Mater. Trans. A, 39(13), 3308(2008)
9 W. Chester,The effect of a magnetic field on Stokes flow, Scr. Mater., 52(1), 79(2005)
10 J. L. Decarlo, R. G. Pirich,Effect of applied magnetic-fields during directional solidification of eutectic Bi-Mn, Metall. Trans. A, 15A(12), 2155(1984)
11 W. Chester,The effect of a magnetic field on Stokes flow in a conducting fluid, J. Fluid. Mech., 3, 304(1957)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!