Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (4): 255-261    DOI: 10.11901/1005.3093.2013.616
Current Issue | Archive | Adv Search |
Effect of Relative Moving Speed on Microstructure of Flexible Friction Assisted Electrodeposited Ni Coating
Biao LV1,2,Zhenfeng HU3,**(),Xiaohe WANG2,Binshi XU2
1. School of Materials and Metallurgy, Northeastern University, Shenyang 110819
2. National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
3. National Engineering Research Center of Mechanical Products Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
Cite this article: 

Biao LV,Zhenfeng HU,Xiaohe WANG,Binshi XU. Effect of Relative Moving Speed on Microstructure of Flexible Friction Assisted Electrodeposited Ni Coating. Chinese Journal of Materials Research, 2014, 28(4): 255-261.

Download:  HTML  PDF(4817KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni coatings were prepared by a novel flexible friction assisted electroplating technology from an additive-free Watts bath at different relative moving speed. The morphology, microstructure, residual stress and microhardness of deposits were characterized by SEM, AFM, XRD, TEM, X-ray stress tester and microhardness tester, respectively. The results show that relative moving speed has important effect on the microstructure of Ni coating. At a relative moving speed range of 4.8-14.4 m/min, electrodeposited Ni coatings have face center cubic crystallography structure with a strong preferred orientation of (311). With the increase of the relative moving speed, the needle-like Ni crystallites gradually becomes uniformity, fine and compact on the surface of coatings; Tensile stress of the coatings firstly decrease then increase, but the microhardness gradually increase from 406 HV to 471 HV. When the relative moving speed achieves 12 m/min, the electrodeposited Ni coating shows much higher microhardness of 460 HV, a lowest tensile stress of about 100 MPa, and the average grain size of about 100 nm.

Key words:  metallic materials      relative moving speed      flexible friction      electrodeposition      nanocrystalline Ni      microstructure     
Received:  25 August 2013     
Fund: *Supported by National Natural Science Foundation of China No. 51005244, Major State Basic Research Development Program of China (973 Program) No. 2011CB013403.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.616     OR     https://www.cjmr.org/EN/Y2014/V28/I4/255

Fig.1  Schematic diagram of flexible friction assisted electroplating apparatus
Fig.2  Effect of relative moving speed on surface morphology of flexible friction assisted Ni electroplating (a) 4.8 m/min; (b) 7.2 m/min; (c) 9.6 m/min; (d) 12 m/min; (e) 14.4 m/min
Fig.3  Cross section morphology of flexible friction assisted Ni electroplating at the relative moving speed of 12 m/min
Fig.4  AFM morphology of flexible friction assisted Ni electroplating at the relative moving speed of 12 m/min (a) Full morphology; (b) Magnify at A area; (c) Magnify at B area
Fig.5  XRD patterns (a) and texture coefficient (b) of flexible friction assisted Ni electroplating at different relative moving speed
Fig.6  TEM images and selected area electron diffraction pattern of flexible friction assisted Ni electroplating at the relative moving speed of 12 m/min (a) Bright field and selected area electron diffraction pattern and (b) Dark field
Fig.7  Effect relative moving speed on residual stress and microhardness of flexible friction assisted Ni electroplating
1 A. Robertson, U. Erb, G. Palumbo,Practical applications for electrodeposited nanocrystalline materials, Nanostructured Materials, 12, 1035(1999)
2 S. C. Tjong,Haydn Chen, Nanocrystalline materials and coatings, Materials Science and Engineering R, 45, 1(2004)
3 ZHENG Liangfu,PENG Xiao, WANG Fuhui, Effect of pulse period and saccharin additive on microstructure of Ni electrodeposits, Chinese Journal of Materials Research, 24(5), 501(2010)
3 (郑良福, 彭 晓, 王福会, 脉冲周期和糖精添加剂对电沉积Ni镀层微观结构的影响, 材料研究学报, 24(5), 501(2010))
4 M. M. A. Imran,Structural and magnetic properties of electrodeposited Ni nanowires, Journal of Alloys and Compounds, 455, 17(2008)
5 HONG Chunfu,DAI Pinqiang, KE Xuebiao, Corrosion characteristic of nanocrystalline nickel prepared by pulse electrodeposition, Rare Metal Materials and Engineering, 36(1), 130(2007)
5 (洪春福, 戴品强, 柯学标, 脉冲电沉积纳米晶体镍腐蚀特性的研究, 稀有金属材料与工程, 36(1), 130(2007))
6 M. Metiko-Hukovi, Z. Gruba?, N. Radi, A. Tonejc,Sputter deposited nanocrystalline Ni and Ni-W films as catalysts for hydrogen evolution, Journal of Molecular Catalysis A: Chemical, 249, 172(2006)
7 X. C. Liu, H. W. Zhang, K. Lu,Strain-induced ultrahard and ultrastable nanolaminated structure in nickel, Science, 342, 337(2013)
8 E. Moti, M. H. Shariat, M.E. Bahrololoom,Electrodeposition of nanocrystalline nickel by using rotating cylindrical electrodes, Materials Chemistry and Physics, 111, 469(2008)
9 C. K. Chung, W. T. Chang, C. F. Chen, M. W. Liao,Effect of temperature on the evolution of diffusivity, microstructure and hardness of nanocrystalline nickel films electrodeposited at low temperatures, Materials Letters, 65, 416(2011)
10 A. M. Rashidi, A. Amadeh,The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings, Surface & Coatings Technology, 204, 353(2009)
11 A. M. Rashidi, A. Amadeh,The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings, Surface & Coatings Technology, 202, 3772(2008)
12 Y. M. Wang, S. Cheng, Q. M. Wei, E. Ma, T. G. Nieh, A. Hamza,Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni, Scripta Materialia, 51, 1023(2004)
13 GU Changdong,LIAN Jianshe, JIANG Qing, Layered nanostructured Ni with modulated hardness fabricated by surfactant-assistant electrodeposition, Scripta Materialia, 57, 233(2007)
14 Z. F. Zhou, Y. Pan, Y. C. Zhou, L. Yang,Growth dynamics and thermal stability of Ni nanocrystalline nanowires, Applied Surface Science, 257, 9991(2011)
15 M. J. N. V. Prasad, A. H. Chokshi,On the exothermic peak during annealing of electrodeposited nanocrystalline nickel, Scripta Materialia, 64, 544(2011)
16 G. Sharma, J. Varshney, A. C. Bidaye, J. K. Chakravartty,Grain growth characteristics and its effect on deformation behavior in nanocrystalline Ni, Materials Science and Engineering A, 539, 324(2012)
17 WU Xiaolei,MA En, Y. T. Zhu, Deformation defects in nanocrystalline nickel, J. of Mater Sci, 42, 1427(2007)
18 A. M. El-Sherik, U. Erb,Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition, J. of Mater Sci, 30, 5743(1995)
19 F. Ebrahimi, Z. Ahmed,The effect of current density on properties of electrodeposited nanocrystalline nickel, Applied Electrochemistry, 33, 733(2003)
20 ZHA Quanxing, Kinetics introductory theory of electrode process, 3th ed., (Beijing, Science Press, 2002) p.311
20 (査全性, 电极过程动力学导论, 第三版, (北京, 科学出版社, 2002) p.311)
21 LIANG Zhijie,XIE Fengkuan, Rubbing spraying electroplating technology, Plating and Finishing, 21(5), 16(1999)
21 (梁志杰, 谢凤宽, 摩擦电喷镀技术, 电镀与精饰, 21(5), 16(1999))
22 NINF Zhaohui,HE Yedong, W. Gao, Mechanical attrition enhanced Ni electroplating, Surface & Coatings Technology, 202, 2139(2008)
23 ZHU ZengWei,ZHU Di, QU NingSong. Effects of simultaneous polishing on electrodeposited nanocrystalline nickel, Materials Science and Engineering A, 528, 7461(2011)
24 LIU Tiancheng,LU Zhichao, LI Deren, SUN Ke, ZHOU Shaoxiong, LU Yanping. Investigation on the microstructure and properties of electrodeposited iron-nickel alloy film with nano-structure, Functional Materials, 38(1), 140(2007)
24 (刘天成, 卢志超, 李德仁, 孙 克, 周少雄, 卢燕平, 电沉积铁镍纳米合金薄膜的结构和性能研究, 功能材料, 38(1), 140(2007))
25 M. F. De Riccardis, D. Carbone,Electrodeposition of well adherent metallic clusters on carbon substrates, Applied Surface Science, 252, 5403(2006)
26 R. T. C. Choo, J. M. Toguri, A. M. El-Sherik, U. Erb,Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating, J. of Appl. Electrochem., 25, 384(1995)
27 T. Watanabe, Nano-Plating: Microstructure control theory of plated film and data base of plated film microstructure, (Beijing, Chemical Industry Press, 2007), p.6
28 T. Watanabe,Nano-plating, Amsterdam, Elsevier Ltd, 2004, p.41, 54
29 M. Schlesinger, M. Paunovic,Modern electroplating, 5th ed., (New York: John Wiley & Sons, Inc., 2010), p.83
30 Z. S. Ma, Y. C. Zhou, S. G. Long, C. Lu,Residual stress effect on hardness and yield strength of Ni thin film, Surface & Coatings Technology, 207, 305(2012)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!