Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (4): 262-268    DOI: 10.11901/1005.3093.2013.844
Current Issue | Archive | Adv Search |
Effect of Rapid Heat Treatment on Bake Hardening Behavior of a Low Carbon Steel
Chunfu KUANG1,2,Shengen ZHANG1,**(),Jun LI2,Jian WANG2,Dechao XU3
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2. Central Research Institute of Baosteel, Shanghai 201900
3. School of Materials and Metallurgy, Northeastern University, Shenyang 110004
Cite this article: 

Chunfu KUANG,Shengen ZHANG,Jun LI,Jian WANG,Dechao XU. Effect of Rapid Heat Treatment on Bake Hardening Behavior of a Low Carbon Steel. Chinese Journal of Materials Research, 2014, 28(4): 262-268.

Download:  HTML  PDF(4782KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A low carbon steel was firstly annealed with an ultra-rapid heating rate of 200℃/s at 660℃ and 750℃ respectively, then the steel was pre-strained to 2% and finally suffered a baking hardening treatment at 180℃ for 20 min in order to reveal the synergistic effect of the above two heat treatments of the performance of the low carbon steel in terms of heating temperature, soaking time and cooling rate etc. Results indicated that the bake hardening was enhanced with the increase in annealing temperature for the dissolution of the carbides. The BH value of the low carbon steel annealed at 660℃ decreased significantly with increasing soaking time. But the BH value showed a complex variation with soaking time for the steel annealed at 750℃ because the carbides dissolved incompletely during the ultra-rapid heating process: with an increase in soaking time in the range of 0 to 10 s, the BH value made an apparent increment, and then decreased obviously when the soaking time exceeded 10 s. The bake hardening of the steel is enhanced significantly with increasing cooling rate due to the increment of the solute carbon.

Key words:  metallic materials      rapid heat treatment      bake hardening      low carbon steel      BH value      solute carbon atom     
Received:  11 November 2013     
Fund: *Supported by National Key Project of Scientific and Technical Supporting Programs of China No.2011BAE13B07.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.844     OR     https://www.cjmr.org/EN/Y2014/V28/I4/262

Processes Heating temperature/℃ Final rolling temperature/℃ Coiling temperature/℃ Cold rolling reduction ratio/% Thickness/mm
1180 880 720 85 0.4
Table 1  Process parameters of rolling
Fig.1  Method used to measure the BH value
Fig.2  OM and SEM images of the samples in various annealing states Rh=200℃/s, ts=20 s, Rc=80℃/s, (a, c) Ts=660℃, (b, d) Ts=750℃
Fig.3  Influences of the heating temperature and the soaking time on the BH value
Fig.4  Influence of the cooling rate on the BH value
Fig.5  Distribution of C atoms in the matrix
Fig.6  SEM images of the specimens annealed for 5 s (a), 10 s (b), 60 s (c) and EDS energy spectrum (d) of the carbides
Fig.7  Influence of the soaking time on the solute carbon concentration
1 A. Karmakar, M. Ghosh, D. Chakrabarti,Cold-rolling and inter-critical annealing of low-carbon steel: effect of initial microstructure and heating-rate, Materials Science and Engineering A, 564, 389(2013)
2 Hamid Azizi-alizamini,Matthas Militzer, Warreen Poole, Austenite formation in plain low-carbon steels, Metallurgical and Materials Transactions A, 42(6), 1549(2011)
3 C. Lesch, P. Alvarez, W. Bleck, J. Gil Sevillano,Rapid transformation annealing: a novel method for grain refinement of cold-rolled low-carbon steels, Metallurgical and Materials Transactions A, 38(9), 1889(2007)
4 Zhang Yan,Yang Quan, He An-rui, Yao Xijiang, Guo Defu, Deviation prevention ability of rollers in continuous annealing furnace and application, Journal of Iron and Steel Research, International, 19(12), 8(2012)
5 Kang Zong-wei,Chen Tei-chen, Three-dimensional temperature distributions of strip in continuous annealing line, Applied Thermal Engineering, 58(1-2), 241(2013)
6 D Muljono,M Ferry, D P Dunne, Influence of heating rate on anisothermal recrystallization in low and ultra-low carbon steels, Materials Science and Engineering A, 303(1-2), 94(2001)
7 HOU Ziyong,XU Yunbo, WU Di, Recrystallization of ultra low carbon steel sheet after ultra rapid annealing, Acta Metallurgica Sinica, 48(9), 1057(2012)
7 (侯自勇, 许云波, 吴 迪, 超快速退火下超低碳钢的再结晶行为研究, 金属学报, 48(9), 1057(2012))
8 HOU Ziyong,XU Yunbo, WU Di, Microstructure and texture of Nb+Ti-IF steel after ultra-short annealing, Chinese Journal of Materials Research, 26(1), 18(2012)
8 (侯自勇, 许云波, 吴 迪, 超快速退火对Ti+Nb-IF钢的组织和织构的影响, 材料研究学报, 26(1), 18(2012))
9 V. Massardiera, A. Ngansopa, D. Fabregue, S. Cazottes, J. Merlin,Ultra-rapid intercritical annealing to improve deep drawability of low-carbon, Al-killed steels, Metallurgical and Materials Transactions A, 43(7), 2232(2012)
10 XU Yunbo,HOU Xiaoying, WANG Yeqin, WU Di, Effects of rapid heating continuous annealing on microstructure and mechanical properties of ultra high-strength TRIP-aided steel, Acta Metallurgica Sinica, 48(2), 176(2012)
10 (许云波, 侯晓英, 王业勤, 吴 迪, 快速加热连续退火对超高强TRIP钢显微组织与力学性能的影响, 金属学报, 48(2), 176(2012))
11 J. Z. Zhao, A. K. De, B. C. De Cooman,Kinetics of Cottrell atmosphere formation during strain aging of ultra-low carbon steels, Materials Letters, 44(6), 375(2000)
12 J. Z. Zhao, A. K. De, B. C. De Cooman,Formation of the Cottrell atmosphere during strain aging of bake-hardenable steels, Metallurgical and Materials Transactions A, 32(2), 417(2001)
13 KANG Yonglin, Theory and Technology of Processing and Forming for Advanced Automobile Steel Sheets (Beijing, Metallurgical Industry Press, 2009)p.194
13 (康永林, 现代汽车板工艺及成形理论与技术 (北京, 机械工业出版社, 2009)p.194)
14 A. Momeni, K. Dehghani, S. Abbasi, M. Torkan,Bake hardening of a low carbon steel for automotive applications, Metalurgija Journal of Metallurgy, 13(2), 134(2007)
15 L. M. Storozheva. Ultra low carbon steels for the automotive industry with the effect of hardening due to drying of finished parts, Metal Science and Heat Treatment, 43(9), 336(2001)
16 H. Alihosseini, K. Dehghani, Bake hardening of ultra-fine grained low carbon steel produced by constrained groove pressing, Materials Science and Engineering A, 549, 158(2012)
17 YONG Qilong, Secondary Phase in Steel (Beijing, Metallurgical Industry Press, 2006)p.125
17 (雍岐龙, 钢铁中的第二相 (北京, 冶金工业出版社, 2006)p.125)
18 Waleed Alshalfan, Jogn G. Speer,Kip Findley, David K. Matlock, Effect of annealing time on solute carbon in ultra low carbon Ti-V and Ti-Nb steels, Metallurgical and Materials Transactions A, 37(1), 215(2006)
19 CUI Zhongqi, Metal Science and Heat Treatment (Beijing, Mechanical Industry Press, 2007)p.220
19 (崔忠圻, 金属学与热处理 (北京, 机械工业出版社, 2007)p.220)
20 Christine Escher, Volker Brandenburg, llse Heckelmann, Automotive Micro-niobium Alloyed Steel, (Beijing, Metallurgical Industry Press, 2006)p.289
21 L. M. Storozheva K. éscher, R. Bode, K. Hulka, D.A. Burko,Effect of niobium and coiling and annealing temperature on the microstructure mechanical properties and bake hardening of ultra low carbon steels for the automotive industry, Metal Science and Heat Treatment, 44(3), 106(2002)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!