Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (4): 248-254    DOI: 10.11901/1005.3093.2013.975
Current Issue | Archive | Adv Search |
Effect of 0.2% H on High Temperature Tensile Deformation Behavior of Ti2AlNb Based Alloy Plate
Yingying ZONG,Daosheng WEN,Bin SHAO,Debin SHAN()
National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
Cite this article: 

Yingying ZONG,Daosheng WEN,Bin SHAO,Debin SHAN. Effect of 0.2% H on High Temperature Tensile Deformation Behavior of Ti2AlNb Based Alloy Plate. Chinese Journal of Materials Research, 2014, 28(4): 248-254.

Download:  HTML  PDF(5317KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to understand the effect of thermo hydrogen treatment (THT) on high temperature tensile behavior of a Ti2AlNb based alloy plate, high temperature tensile tests of Ti-22Al-25Nb alloy plates without and with 0.2%H (mass fraction) charging were conducted with strain rate of 2.5×10-2 s-1 at 870, 900, 930 and 990℃respectively. It was found that 0.2%H charging could reduce the high temperature flow stress and enhance the tensile elongation. When deformed at 930℃, the peak stress of the hydrogen charged Ti-22Al-25Nb alloy decreased by approximately 36%, and the elongation increased by approximately 53% in comparison with the bare alloy. Hydrogen-induced softening and plasticity might mainly be attributed to the hydrogen promoted the dynamic recrystallization of α2 phase, the dislocation movement and the dynamic recovery of b/B2 phase as well as increased the amount of b/B2 phase.

Key words:  metallic materials      nonferrous metals and alloy      Ti2AlNb based alloy      thermo hydrogen technology      flow softening      dynamic recrystallization      dislocation movement     
Received:  27 December 2013     
Fund: *Supported by National Natural Science Foundation of China No.51275132, the State Key Laboratory of Materials Processing and Die &Mould Technology, Huazhong University of Science and Technology No.2011-P11, and Harbin Science and Technology Department No.2008RFQXG046.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.975     OR     https://www.cjmr.org/EN/Y2014/V28/I4/248

Fig.1  XRD spectra of unhydrogenated (a) and hydrogenated (b)Ti-22Al-25Nb alloys
Fig.2  Microstructures of unhydrogenated (a, c) and hydrogenated (b, d) Ti-22Al-25Nb alloys before tensile test
Ti Al Nb
I Balance 22.02 25.65
II 22.09 25.28
III 24.41 20.51
Table 1  Element contents of I、II、III regions in Fig.2a (atomic fraction, %)
Fig.3  True stress-strain curves (a), peak stresses (b) and elongations (c) of unhydrogenated and hydrogenated Ti-22Al-25Nb alloys deformed at high temperature
Fig.4  Microstructure of hydrogenatedTi-22Al-25Nb alloy deformed at 870℃ and strain rate of 2.5×10-2 s-1
Fig.5  Microstructures of unhydrogenated (a, b) and hydrogenated (c, d) Ti-22Al-25Nb alloys deformed at 930℃ and strain rate of 2.5×10-2 s-1
Fig.6  Microstructures of unhydrogenated (a, c, e) and hydrogenated (b, d, f) Ti-22Al-25Nb alloys deformed at 990℃and strain rate of 2.5×10-2 s-1
1 D. Banerjee, A. K. Gogia, T. K. Nandi, V. A. Joshi,A new ordered orthorhombic phase in a Ti3Al-Nb alloy, Acta Metallurgica, 36(4), 871(1988)
2 R. G. Rowe,Ti2AlNb based alloys outperform conventional titanium aluminides, Advanced Materials and Processes, 3, 33(1992)
3 S. R. Dey, S. Satyam, J. J. Fundenberger, R. K. Ray,Evolution of crystallographic texture and microstructure in the orthorhombic phase of a two-phase alloyTi-22Al-25Nb, Intermetallics, 17(8), 622(2009)
4 C. Leyens, H. Gedanitz,Long-term oxidation of orthorhombic alloy Ti-22Al-25Nb in air between 650 and 800℃, Scripta Materialia, 41(8), 901(1999)
5 Y. Mao, S. Q. Li, J. W. Zhang, J. H. Peng, D. X. Zou, Z. Y. Zhong,Microstructure and tensile properties of orthorhombic Ti-Al-Nb-Ta alloys, Intermetallics, 8(5-6), 659(2000)
6 A. K. Gogia, T. K. Nandy, D. Banerjee,Microstructure and mechanical properties of orthorhombic alloys in the Ti-Al-Nb system, Intermetallics, 6(7-8), 741(1998)
7 F. Chu, T. E. Mitchell, B. Majumdar, D. Miracle, T. K. Nandy, D. Banerjee,Elastic properties of the O phase in Ti-Al-Nb alloys, Intermetallics, 5(2), 147(1997)
8 SI Yufeng,MENG Lihua, CHEN Yuyong, Research development of Ti2AlNb-based alloy, Aerospace Materials and Technology, 3, 10(2006)
8 (司玉峰, 孟丽华, 陈玉勇, Ti2AlNb基合金的研究进展,宇航材料工艺, 3, 10(2006))
9 ZHANG Yonggang, HAN Yafang, CHEN Guoliang, GUO Jianting, WAN Xiaojing, FENG Di, Structural Intermetallics (Beijing, National Defense Industry Press, 2001) p.789
9 (张永刚, 韩雅芳, 陈国良, 郭建亭, 万晓景, 冯 涤, 金属间化合物结构材料 (北京, 国防工业出版社, 2001) p.789)
10 C. Xue, W. D. Zeng, W. Wang, X. B. Liang, J. W. Zhang,Quantitative analysis on microstructure evolution and tensile property for the isothermally forged Ti2AlNb based alloy during heat treatment, Materials Science & Engineering A, 573, 183(2013)
11 P. Lin, Z. B. He, S. J. Yuan, J. Shen, Y. J. Huang, X. B. Liang,Instability of the O-phase in Ti-22Al-25Nb alloy during elevated-temperature deformation, Journal of Alloys and Compounds, 587, 96(2013)
12 ZHANG Jianwei,ZHANG Haishen, ZHANG Xuecheng, LIANG Xiaobo, CHENG Yunjun, LI Shiqiong, Control of duplex-microstructure and its effect on mechanical properties of Ti-23Al-17Nb alloys, Rare Metal Materials and Engineering, 39(2), 372(2010)
12 (张建伟, 张海深, 张学成, 梁晓波, 程云君, 李世琼, Ti-23Al-17Nb合金双态组织的控制及其对力学性能的影响,稀有金属材料与工程, 39(2), 372(2010))
13 Y. J. Cheng, S. Q. Li, X. B. Liang, Y. J. Cheng, S. Q. Li,Effect of deformed microstructure on mechanical properties of Ti-22Al-25Nb alloy, Transactions of Nonferrous Metals Society of China, 16, s2058(2006)
14 LIAO Bo,WANG Tiansheng, YANG Ke, YUAN Hui, Effect of thermochemical processing with hydrogen on microstructure of super-α2 alloy, Acta Metallurgica Sinica, 31(5), A223(1995)
14 (廖 波, 王天生, 杨 柯, 苑 辉, 加氢热化学处理对Super-α2合金组织的影响,金属学报, 31(5), A223(1995))
15 Y. Zhang, S. Q. Zhang,Hydrogen effects on high temperature deformation characteristics of a cast Ti-14Al-19Nb-3V-2Mo alloy, Scripta Materialia, 37(9), 1315(1997)
16 DING Hua,DU Yunhui, LU Guimin, DONG Lin, ZHANG Caibei, CUI Jianzhong, Effect of hydrogen on microstructure and superplasticity of the Ti3Al based alloys, The Chinese Journal of Nonferrous Metals, 8(Suppl.)(2), 341(1998)
16 (丁 桦, 杜云惠, 路贵民, 董 林, 张彩碚, 崔建忠, 氢对Ti3Al基合金组织和超塑性能的影响,中国有色金属学报, 8(增刊)(2), 341(1998))
17 DONG Lin,ZHANG Caibei, DING Hua, SUN Wei, ZHAO Zhijiang, Effect of hydrogenation on microstructure of the forging Ti-25Al-10Nb-3V-1Mo alloy, Chinese Journal of Materials Research, 14(Suppl.), 63(2000)
17 (董 林, 张彩碚, 丁 桦, 孙 伟, 赵志江, 渗氢对Ti-25Al-10Nb-3V-1Mo锻态合金显微组织的影响,材料研究学报, 14(增刊), 63(2000))
18 Z. Chen, F. Simca, M. T. Cope,Microstructure and tensile properties of aged Superalpha 2 intermetallic compound, Materials Science and Technology, 8(8), 729(1992)
19 T. Sakai,Dynamic recrystallization microstructures under hot-working conditions, Journal of Materials Processing Technology, 53(1-2), 349(1995)
20 I. Weiss, S. L. Semiatin,Thermomechanical processing of beta titanium alloys-an overview, Materials Science & Engineering A, 243, 46(1998)
21 ZONG Yingying,Study on the hydrogen enhanced plasticity mechanism and deformation behaviors of titanium alloys at high temperatures, PhD Dissertation, Harbin Institute of Technology(2007)
21 (宗影影, 钛合金置氢增塑机理及其高温变形规律研究,博士学位论文, 哈尔滨工业大学(2007))
22 ZHANG Yong,ZHANG Shaoqing, TAO Chunhu, Effect of hydrogenation on the high temperature deformation behavior of a cast Ti-25Al-10Nb-3V-1Mo alloy, Acta Metallurgica Sinica, 2(3), 235(1996)
22 (张 勇, 张少卿, 陶春虎, 氢化Ti-25Al-10Nb-3V-1Mo铸态合金的热压缩行为及其显微组织,金属学报, 2(3), 235(1996))
23 P. Lin, Z. B. He, S. J. Yuan, J. Shen,Tensile deformation behavior of Ti-22Al-25Nb alloy at elevated temperatures, Materials Science & Engineering A, 556, 617(2012)
24 DING Hua,LU Guimin, ZHANG Caibei, CUI Jianzhong, Effect of hydrogenation on microstructure and mechanical properties of intermetallic Ti3Al, Materials Science and Technology, 6(4), 55(1998)
24 (丁 桦, 路贵民, 张彩碚, 崔建忠, 氢处理对Ti3Al金属间化合物组织和性能的影响,材料科学与工艺, 6(4), 55(1998))
25 B. Liao, K. Yang, Y. Y. Li, T. S. Wang, H. Yuan,Effect of hydrogen on(α2/b)/b transustemperature of super-α2 alloy, Scripta Metallurgica & Materialia, 32(2), 277(1995)
26 N. V. Kazantseva, S. V. Lepikhin,Study of the Ti-Al-Nb phase diagram,The Physicsof Metals and Metallography, 102, 169(2006)
27 SUN Fusheng,MA Jimin, CAO Chunxiao, Microscopic observation of superplastic deformation in a Ti3Al alloy, Acta Metallurgica Sinica, 30, B465(1994)
27 (孙福生, 马济民, 曹春晓, Ti3Al基合金超塑性形变的微观观察,金属学报, 30, B465(1994))
28 GUO Heping,ZENG Yuansong, LI Zhiqiang, Research progress of superplasticity of intermetallic Ti2AlNb orthorhombic alloys, Aeronautical Manufacturing Technology, (10), 64(2009)
28 (郭和平, 曾元松, 李志强, O相合金Ti2AlNb的超塑性研究进展,航空制造技术, (10), 64(2009))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!