Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (2): 153-160    DOI: 10.11901/1005.3093.2013.335
Current Issue | Archive | Adv Search |
Preparation and Characterization of Cu2ZnSnS4 Nanocrystals and Thin Films
Donglin XIA(),Yuchen ZHENG,Bo HUANG,Xiujian ZHAO
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070
Cite this article: 

Donglin XIA,Yuchen ZHENG,Bo HUANG,Xiujian ZHAO. Preparation and Characterization of Cu2ZnSnS4 Nanocrystals and Thin Films. Chinese Journal of Materials Research, 2014, 28(2): 153-160.

Download:  HTML  PDF(5841KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Cu2ZnSnS4 (CZTS) nanocrystallites were synthesized by hot injection method with starting materials of copper (II) acetylacetonate [Cu (AcAc) 2], zinc acetate [Zn(CH3COO)22H2O], tin(II) chloride dehydrate [SnCl22H2O], elemental sulfur (S) and dodecanethiol. Then CZTS thin films were prepared by spin coating method. The crystallographic structure, morphology, chemical composition and optical properties of CZTS nanocrystallites and their thin films were characterized by X-ray diffraction (XRD), Raman spectrum (RS), transmission electron microscopy (TEM), scanning electron microscope (SEM) with energy dispersive X-Ray spectroscopy (EDS) and UV-Vis transmittance spectroscopy. The influence of injection temperature on the crystallographic structure, morphology, grain size and chemical composition of CZTS nanocrystallites, and the influence of annealing time on the crystallographic, morphology, chemical composition and optical properties of CZTS thin films were investigated respectively. The results show that the CZTS nanocrystallites synthesized at 180 ℃ were consisted of single phase kesterite with an average grain size 18 nm, while the CZTS thin film after annealing at 500℃ for 2h exhibits an absorption coefficient of 104 cm-1 for the visible light and an optical band gap of 1.45 eV.

Key words:  inorganic non-metallic materials      Cu2ZnSnS4      hot injection method      nanocrystallite      spin coating method     
Received:  20 May 2013     
Fund: *Supported by the Key Project of Natural Science Foundation of China No. 20101j0121.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.335     OR     https://www.cjmr.org/EN/Y2014/V28/I2/153

Fig.1  XRD patterns of CZTS nanocrystals prepared at different injection temperature (A1) 150℃; (A2) 180℃; (A3) 200℃; (A4) 250℃
Fig.2  Raman spectra of CZTS nanocrystals prepared at different injection temperature (A1) 150℃; (A2) 180℃; (A3) 200℃; (A4) 250℃
Fig.3  TEM and HRTEM micrographs of sample A1
Fig.4  TEM and HRTEM micrographs of sample A2
Fig.5  TEM and HRTEM micrographs of sample A3
Fig.6  TEM and HRTEM micrographs of sample A4
Sample Temperature/℃ Cu (%) Zn (%) Sn (%) S (%)
A1 150 30.77 8.33 13.05 47.85
A2 180 26.76 10.31 15.67 47.26
A3 200 28.26 8.79 15.18 47.88
A4 250 24.54 12.96 13.71 48.79
Table 1  EDS date of CZTS nanocrystals prepared at different injection temperature (atomic fraction, %)
Fig.7  XRD patterns of CZTS thin films prepared at different annealing time (B0) As-deposited; (B1) 1 h; (B2) 1.5 h; (B3) 2 h
Fig.8  SEM microgarphs of CZTS thin films prepared at different annealing time (a) As-deposited; (b) 1 h; (c) 1.5 h; (d) 2 h
Sample Annealing time/h Cu (%) Zn (%) Sn (%) S (%)
B0 As-deposited 26.76 10.31 15.67 47.26
B1 1 22.35 13.44 14.93 49.29
B2 1.5 21.77 14.58 13.26 50.38
B3 2 21.37 14.26 13.12 51.26
Table 2  EDS date of CZTS thin films prepared at different annealing time (atomic fraction, %)
Fig.9  UV-Vis absorption spectroscopy of CZTS thin films prepared at different annealing time (B1) 1 h; (B2) 1.5 h; (B3) 2 h
Fig.10  (ahn)2~(hn) curves of CZTS thin films prepared at different annealing time (B1) 1 h; (B2) 1.5 h; (B3) 2 h
1 K. Ito, T. Nakazawa,Electrical and optical properties of stannite-type quaternary semiconductor thin films, Japanese Journal of Applied Physics, 27(11), 2094(1988)
2 K. Moriya, J. Watabe, K. Tananka, H. Uchiki,Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition, Physica Status Solidi(c), 3(8), 2848(2006)
3 K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki,Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing, Solar Energy Materials & Solar Cells, 93(5), 583(2009)
4 Q. J. Guo, H. W. Hillhouse, R. Agrawal,Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells, Journal of the American Chemical Society, 131(33), 11672(2009)
5 S. W. Shin, S. M. Pawarb, C. Y. Park, J. H. Yun, J. H. Moon, J. H. Kim, J. Y. Lee,Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films, Solar Energy Materials & Solar Cells, 95(12), 3202(2011)
6 H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota,Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors, Solar Energy Materials & Solar Cells, 49(1-4), 407(1997)
7 H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, S.W. Maw, T. Fukano, T. Ito, T. Motohiro,Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique, Applied Physics Express, 1(4), 0412011(2008)
8 Q. J. Guo, G. M. Ford, W. C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse, R. Agrawal,Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals, Journal of the American Chemical Society, 132(49), 17384(2010)
9 T. K. Todorov, K. B. Reuter, D. B. Mitzi,High-ef?ciency solar cell with earth-abundant liquid-processed absorber, Advanced Materials, 22(20), E156(2010)
10 Y. L. Zhou, W. H. Zhou, Y. F. Du, M. Li, S. X. Wu,Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothernal method, Materials Letters, 65(11), 1535(2011)
11 T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi,Beyond 11% ef?ciency: Characteristics of state-of-the-art Cu2ZnSn(S, Se)4 solar cells, Advanced Energy Materials, 3(1), 34(2012)
12 K. Moriya, K. Tanaka, H. Uchiki,Fabrication of Cu2ZnSnS4 thin film solar cell prepared by pulsed laser deposition, Japanese Journal of Applied Physics, 46(9A), 5780(2007)
13 K. Tanaka, N. Moritake, H. Uchiki,Preparation of Cu2ZnSnS4 thin films by sulfurizing sol-gel deposited precursors, Solar Energy Materials & Solar Cells, 91(13), 1199(2007)
14 T. Todorov, D. B. Mitzi,Direct liquid coating of chalcopyrite light absorbing layers for photovoltaic devices, European Journal of Inorganic Chemistry, 2010(1), 17(2010)
15 Z. H. Zhou, Y. Y. Wang, D. Xu, Y.F. Zhang,Fabrication of Cu2ZnSnS4 screen printed layers for solar cells, Solar Energy Materials & Solar Cells, 94(12), 2042(2010)
16 A. Ennaoui, M. Lux-Steiner, A. Weber, D.A. Ras, I. Kotschau, H.W. Schock, R. Schurr, A. Holzing, S. Jost, R. Hock, T. Vob, J. Scchlze, A. Kirbs,Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective, Thin Solid Films, 517(7), 2511(2009)
17 XIANG Weidong,YANG Hailong, WANG Jing, ZHAO Yinsheng, ZHONG Jiasong, ZHAO Binyu, LUO Le, XIE Cuiping. Advances in hot-injection synthesis of Culn(Se, S)2 nanomaterials, Materials Review, 26(5), 15(2012)
17 (向卫东, 杨海龙, 王 京, 赵寅生, 钟家松, 赵赋宇, 骆 乐, 谢翠萍, 热注射法制备CuIn(Se, S)2纳米材料的研究进展, 材料导报, 26(5), 15(2012))
18 P. A. Fernandes, P. M. P. Salome, A. F. da Cunha,Study of polycrystalline Cu2ZnSnS4 films by Raman scattering, Journal of Alloys and Compounds, 509(28), 7600(2011)
19 P. A. Fernandes, P. M. P. Salome, A. F. da Cunha,Growth and Raman scattering characterization of Cu2ZnSnS4 thin films, Thin Solid Films, 517(7), 2519(2009)
20 L. S. Price, I. P. Parkin, A. M. E. Hardy, R. J. H. Clark, Atmospheric pressure chemical vapor deposition of Tin sulfides (SnS, Sn2S3, and SnS2) on glass, Chemical Materials, 11(7), 1792(1999)
21 W. G. Nilsen,Raman spectrum of cubic ZnS, Physical Review, 182(3), 838(1969)
22 P. A. Fernandes, P. M. P. Salome, A. F. da Cunha,A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors, Journal of Physics D: Appllied Physics, 43(21), 215403(2010)
23 H. Wei, W. Guo, Y. J. Sun, Z. Yang, Y. F. Zhang,Hot-injection Synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals, Materials Letters, 64(13), 1424(2010)
24 K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki,Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol-gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency, Solar Energy Materials & Solar Cells, 95(3), 838(2011)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!