Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (4): 259-271    DOI: 10.11901/1005.3093.2024.227
  研究论文 本期目录 | 过刊浏览 |
CeO2-GO/EP防腐复合涂层的制备和性能
彭怡和1, 欧宝立1,2,3(), 彭勇洁1, 温乜一1, 程天宇1, 陈迪名1
1.湖南科技大学材料科学与工程学院 湘潭 411201
2.中国科学院兰州化学物理研究所 固体润滑国家重点实验室 兰州 73000
3.清华大学高端装备界面科学与技术全国重点实验室 北京 100084
Preparation and Properties of Cerium Dioxide-Graphene Oxide Hybrid Materials (CeO2-GO)/Epoxy Resin Anti-corrosive Composite Coating
PENG Yihe1, OU Baoli1,2,3(), PENG Yongjie1, WEN Mieyi1, CHENG Tianyu1, CHEN Diming1
1.School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
2.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3.State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
引用本文:

彭怡和, 欧宝立, 彭勇洁, 温乜一, 程天宇, 陈迪名. CeO2-GO/EP防腐复合涂层的制备和性能[J]. 材料研究学报, 2025, 39(4): 259-271.
Yihe PENG, Baoli OU, Yongjie PENG, Mieyi WEN, Tianyu CHENG, Diming CHEN. Preparation and Properties of Cerium Dioxide-Graphene Oxide Hybrid Materials (CeO2-GO)/Epoxy Resin Anti-corrosive Composite Coating[J]. Chinese Journal of Materials Research, 2025, 39(4): 259-271.

全文: PDF(15763 KB)   HTML
摘要: 

用3-氨丙基三乙氧基硅烷和3-缩水甘油醚氧丙基三甲氧基硅烷分别对氧化石墨烯(GO)和二氧化铈(CeO2)纳米粒子表面进行共价化学修饰,氨基与环氧基之间的开环反应将CeO2纳米粒子锚定在GO的表面得到CeO2-GO杂化材料,将其引入环氧树脂基体中制备出CeO2-GO杂化材料/环氧树脂防腐复合涂层(CeO2-GO/EP)防腐复合涂层。使用FT-IR、XPS和SEM等手段对其表征。结果表明,CeO2-GO杂化材料均匀分散在环氧树脂基体中。CeO2-GO/EP涂层的吸水率和摩擦系数明显比纯环氧树脂涂层的低。1.0% CeO2-GO/EP (质量分数)具有较低的腐蚀电流密度(Icorr)值(8.42 × 10-13 A·cm-2)和较高的腐蚀电位(Ecorr)值(-65 mV)。在3.5%NaCl (质量分数)溶液中浸泡60 d后的CeO2-GO/EP涂层样品,其阻抗|Z|0.01 Hz值为7.41 × 109 Ω·cm2,是纯环氧树脂涂层|Z|0.01 Hz值(6.56 × 106 Ω·cm2)的1000倍。主动和被动双重防腐机制使CeO2-GO/EP涂层具有长效防腐性能。

关键词 材料表面与界面CeO2氧化石墨烯环氧树脂防腐涂层    
Abstract

In order to fabricate epoxy resin composite coating with superior long-term anti-corrosive properties, graphene oxide (GO) and cerium dioxide (CeO2) nanoparticles were covalently modified with (3-Aminopropyl) triethoxysilane and 3-Glycidyloxypropyltrimethoxysilane, respectively. Subsequently, CeO2 nanoparticles were anchored on the surface of GO through the reaction between -NH2 and -C-O-C-, obtaining CeO2-GO hybrid materials. Afterwards, the composite coating (CeO2-GO)/EP was prepared via incorporating the prepared hybrid material with epoxy resin matrix. While the prepared CeO2-GO hybrid materials and the composite coating (CeO2-GO/E) P were characterized by means of FT-IR, XPS and SEM. The SEM images of the coating fracture morphology show that the CeO2-GO hybrid material was uniformly dispersed in epoxy resin matrix. The results of water absorption and friction wear test manifest that the water absorption and friction coefficient of CeO2-GO/EP coating are significantly lower than that of the pure epoxy resin coating. The potentiodynamic polarization curve and EIS test results indicate that the coating (CeO2-GO/EP) with addition of 1.0%CeO2-GO/EP has the lowest Icorr value (8.42 × 10-13 A·cm-2) and the higher Ecorr value (-65 mV). After being immersed in 3.5% (mass fraction) NaCl solution for 60 d, the CeO2-GO/EP coatings with mass fraction of 0.5%, 1.0%, 1.5% and 2.0% CeO2-GO still presented |Z|0.01 Hz values 7.88 × 109, 4.97 × 109, 5.26 × 109 and 7.41 × 109 Ω·cm2, respectively. It is 1000 times of the pure epoxy resin coating |Z|0.01 Hz value 6.56 × 106 Ω·cm2. According to the various performance test results, the long-term anti-corrosion performance of CeO2-GO/EP coatings may be ascribed to the dual active/passive anti-corrosion mechanism.

Key wordssurface and interface in the materials    cerium dioxide    graphene oxide    epoxy resin    anti-corrosion coating
收稿日期: 2024-05-22     
ZTFLH:  TQ174.75  
基金资助:国家自然科学基金(51775183);湖南省自然科学基金(2025JJ70082);湖南省教育厅科研基金(24A0335);中国科学院兰州化学物理研究所润滑材料全国重点实验室开放基金(LSL-2410);清华大学高端装备界面科学与技术全国重点实验室开放基金(SKLTKF24B10)
通讯作者: 欧宝立,教授,B.Ou@hnust.edu.cn,研究方向为表面涂层材料与技术
Corresponding author: OU Baoli, Tel: 18711342880, E-mail: B.Ou@hnust.edu.cn
作者简介: 彭怡和,男,1997年生,硕士生
图1  CeO2-GO杂化材料的制备示意图
图2  f-GO、f-CeO2和CeO2-GO的红外谱
图3  f-GO、f-CeO2和CeO2-GO的XPS谱,以及CeO2-GO中Si、N和Ce元素的精细谱和高斯拟合结果
图4  f-GO、CeO2-GO的SEM形貌和CeO2-GO的EDS元素分布图
图5  涂层断面的SEM形貌和0.5% CeO2-GO涂层的EDS元素分布图
图6  不同涂层样品浸泡不同时间后的吸水率
图7  不同涂层样品的摩擦系数
图8  不同涂层样品在3.5%NaCl溶液中浸泡3 d后的动电位极化曲线
SampleCorrosion potential,Ecorr / mVCorrosion current density, Icorr / A·cm-2
Bare steel-7107.83 × 10-4
Pure EP-5554.23 × 10-11
0.5% f-GO/EP-4004.67 × 10-11
0.5% CeO2-GO/EP-1771.67 × 10-12
1.0% CeO2-GO/EP-658.42 × 10-13
1.5% CeO2-GO/EP-3361.90 × 10-12
2.0% CeO2-GO/EP-449.14 × 10-12
表1  动电位极化曲线的电化学动力学参数拟合结果
图9  不同涂层样品在3.5%NaCl溶液中浸泡3 d后的Nyquist图和Bode图
图10  各涂层样品在3.5%NaCl溶液中浸泡不同时长后的Nyquist图
图11  不同涂层样品在3.5%NaCl溶液中浸泡不同时长后的Bode图
图12  用于拟合EIS测试结果的等效电路模型
图13  不同涂层样品在60 d浸泡时间内的|Z|0.01 Hz和Rct
图14  纯 EP涂层、f-GO/EP和CeO2-GO/EP复合防腐涂层的防腐机理示意图
1 Zhou X N, Zhang S X, Song Y H, et al. A novel and green 3-amino-1,2,4-triazole modified graphene oxide nanomaterial for enhancing anti-corrosion performance of water-borne epoxy coatings on mild steel [J]. Prog. Org. Coat., 2024, 187: 108106
2 Zhu M L, Yuan R X, Wang C J, et al. Fabrication and performance study of a superhydrophobic anti-scaling and anti-corrosion coating [J]. Appl. Surf. Sci., 2023, 615: 156287
3 Ma X M, Zheng M, Xu W C, et al. Study of corrosion cost and control strategy [J]. Mar. Sci., 2021, 45(2): 161
3 马秀敏, 郑 萌, 徐玮辰 等. 腐蚀成本及控制策略研究 [J]. 海洋科学, 2021, 45(2): 161
4 Li C, Gao J, Huang Y H, et al. Interaction of interfacial debonding and under-film corrosion propagation at the edge of the blistering area of epoxy coating [J]. J. Coat. Technol. Res., 2023, 20(2): 457
5 Marcelin S, Livi S, Ter-Ovanessian B, et al. Potential of epoxy coating containing ionic liquid as anti-corrosion coating: Evaluation of barrier properties [J]. Surf. Coat. Technol., 2024, 477: 130376
6 Khorgami G, Haddadi S A, Okati M, et al. In situ-polymerized and nano-hybridized Ti3C2-MXene with PDA and Zn-MOF carrying phosphate/glutamate molecules; toward the development of pH-stimuli smart anti-corrosion coating [J]. Chem. Eng. J., 2024, 484: 149630
7 Sun W H, Tang E J, Zhao L L, et al. The waterborne epoxy composite coatings with modified graphene oxide nanosheet supported zinc ion and its self-healing anticorrosion properties [J]. Prog. Org. Coat., 2023, 182: 107609
8 Mohammadkhani R, Sharifi K, Fedel M, et al. Fabricating epoxy composite coating having self-healing/barrier anti-corrosion functions utilizing ion-exchange/pH-sensitive phosphate-doped ZIF8 MOF decorated Zn-Al-LDH nano-layers [J]. Surf. Coat. Technol., 2024, 477: 130284
9 Meng L, Xu F, Zhang M, et al. A novel anticorrosive performance coating through introducing epoxidized hydroxyl terminated polybutadiene [J]. Prog. Org. Coat., 2023, 175: 107334
10 Liang X L, Liu Q, Wang G, et al. Study on corrosion resistance and thermal insulation properties of graphene oxide modified epoxy thermal insulation coating [J]. Chin. J. Mater. Res., 2020, 34(5): 345
doi: 10.11901/1005.3093.2019.543
10 梁新磊, 刘 茜, 王 刚 等. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究 [J]. 材料研究学报, 2020, 34(5): 345
doi: 10.11901/1005.3093.2019.543
11 Mirzaee M, Kianpour E, Rashidi A, et al. Construction of a high-performance anti-corrosion epoxy coating in the presence of poly(aniline-co-pyrrole) nanospheres [J]. React. Funct. Polym., 2024, 194: 105794
12 Liu Q, Li H, Kong L, et al. A performance and eco-friendly bio-inspired waterborne anti-corrosion composite coating by low-defect PDA@g-C3N4 nanosheets [J]. Prog. Org. Coat., 2024, 187: 108049
13 Song J L, Yang Z, Liu X, et al. Aging behavior of fluorocarbon polyurethane and epoxy system coating for carbon steel under subtropical monsoon climate [J]. Corros. Prot., 2023, 44(8): 35
13 宋嘉良, 杨 臻, 刘 璇 等. 亚热带季风气候下碳钢氟碳聚氨酯-环氧涂层的老化行为 [J]. 腐蚀与防护, 2023, 44(8): 35
14 Hao Q G, Liu S, Wang X M, et al. Progression from graphene and graphene oxide to high-performance epoxy resin-based composite [J]. Polym. Degrad. Stab., 2024, 223: 110731
15 Chen W, Wu Z W, He X Y, et al. Achieving superior anti-corrosion properties of vinyl ester resin coatings via compositing with 3-methacryloxy propyl trimethoxysilane functionalized MXene nanosheets [J]. Polym. Test., 2023, 127: 108203
16 Liu T H, Zhao Y Z, Deng Y N, et al. Preparation of fully epoxy resin microcapsules and their application in self-healing epoxy anti-corrosion coatings [J]. Prog. Org. Coat., 2024, 188: 108247
17 Kulyk B, Freitas M A, Santos N F, et al. A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings [J]. Crit. Rev. Solid State Mater. Sci., 2022, 47(3): 309
18 Han X T, Ren L L, Ma Y, et al. A mussel-inspired self-repairing superhydrophobic coating with good anti-corrosion and photothermal properties [J]. Carbon, 2022, 197: 27
19 Li T S, Zhan H C, Lan H P, et al. Graphene oxide modification and its application in anticorrosive epoxy coatings [J]. J. Chem. Eng. Chin. Univ., 2023, 37(4): 525
19 李通盛, 詹浩成, 蓝慧萍 等. 氧化石墨烯改性及其在环氧防腐涂层中的应用进展 [J]. 高校化学工程学报, 2023, 37(4): 525
20 Cui M J, Chen X Y, Mei S X, et al. Bioinspired polydopamine nanosheets for the enhancement in anti-corrosion performance of water-borne epoxy coatings [J]. Chem. Eng. J., 2023, 471: 144760
21 Yu R C, Yuan X. Rising of boron nitride: a review on boron nitride nanosheets enhanced anti-corrosion coatings [J]. Prog. Org. Coat., 2024, 186: 107990
22 Liu J G, Huang W R, Zhang K L, et al. Early warning and self-repair properties of o-phenanthroline modified graphene oxide anti-corrosion coating [J]. Prog. Org. Coat., 2024, 189: 108274
23 Kumar S S A, Bashir S, Ramesh K, et al. New perspectives on Graphene/Graphene oxide based polymer nanocomposites for corrosion applications: the relevance of the Graphene/Polymer barrier coatings [J]. Prog. Org. Coat., 2021, 154: 106215
24 Assad H, Fatma I, Kumar A. An overview of the application of graphene-based materials in anticorrosive coatings [J]. Mater. Lett., 2023, 330: 133287
25 Zhou L S, Zhang P B, Shen L M, et al. Modified graphene oxide/waterborne epoxy composite coating with enhanced corrosion resistance [J]. Prog. Org. Coat., 2022, 172: 107100
26 Ren S M, Cui M J, Liu C B, et al. A comprehensive review on ultrathin, multi-functionalized, and smart graphene and graphene-based composite protective coatings [J]. Corros. Sci., 2023, 212: 110939
27 Zhang M L, Wang H, Nie T, et al. Enhancement of barrier and anti-corrosive performance of zinc-rich epoxy coatings using nano-silica/graphene oxide hybrid [J]. Corros. Rev., 2020, 38(6): 497
28 He Y S, Fan X Q, Huang Y, et al. Experimental and theoretical evaluations on the parallel-aligned graphene oxide hybrid epoxy composite coating toward wear resistance [J]. Carbon, 2024, 217: 118629
29 Zhang T T, Zhang Y K, Chen C, et al. Corrosion-resistant SiO2-graphene oxide/epoxy coating reinforced by effective electron beam curing [J]. Prog. Org. Coat., 2023, 184: 107855
30 Wan T, Wang B, Wei S C, et al. Effect of GO-TiO2 to waterborne epoxy resin on microstructure and anti-corrosion properties [J]. J. Appl. Polym. Sci., 2023, 140(40): 1
31 Wang S, Liu W Q, Shi H Y, et al. Co-modification of nano-silica and lysine on graphene oxide nanosheets to enhance the corrosion resistance of waterborne epoxy coatings in 3.5%NaCl solution [J]. Polymer, 2021, 222: 123665
32 Ramezanzadeh B, Haeri Z, Ramezanzadeh M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance [J]. Chem. Eng. J., 2016, 303: 511
33 Zhou S F, Yan J, Yan H M, et al. ZrO2-anchored rGO nanohybrid for simultaneously enhancing the wear resistance and anticorrosion performance of multifunctional epoxy coatings [J]. Prog. Org. Coat., 2022, 166: 106795
34 Cao N, Wang T, Boukherroub R, et al. Facile and secure synthesis of porous partially fluorinated graphene employing weakly coordinating anion for enhanced high-performance symmetric supercapacitor [J]. J. Materiomics, 2022, 8(1): 113
35 Hu X B, Yu Y, Wang Y Q, et al. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution [J]. Appl. Surf. Sci., 2015, 329: 83
36 Sun Y, Li C, Fu D Y, et al. A novel high anti-corrosion performance polymer based composite coating with new functional fillers [J]. Prog. Org. Coat., 2022, 162: 106603
37 Wang Y W, Ou B L, Lu Y, et al. Preparation and properties of functionalized nano TiO2/epoxy resin superhydrophobic anticorrosive composite coating [J]. Acta Mater. Compos. Sin., 2021, 38(12): 3971
37 汪雨微, 欧宝立, 鲁 忆 等. 功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能 [J]. 复合材料学报, 2021, 38(12): 3971
38 Pei L C, Lin D, Yuan S C, et al. A multifunctional and long-term waterborne anti-corrosion coating with excellent ‘hexagonal warrior’ properties [J]. Chem. Eng. J., 2023, 457: 141158
39 Liu S, Jiang X, Zhao H C, et al. Corrosion resistance and wear property of graphene-epoxy coatings [J]. Tribology, 2015, 35(5): 598
39 刘 栓, 姜 欣, 赵海超 等. 石墨烯环氧涂层的耐磨耐蚀性能研究 [J]. 摩擦学学报, 2015, 35(5): 598
40 Zhang M, Xu F, Lin D, et al. A smart anti-corrosion coating based on triple functional fillers [J]. Chem. Eng. J., 2022, 446: 137078
41 Xu C A, Li X C, Tong Z B, et al. Mimosa inspired intelligent anti-corrosive composite coating by incorporating lignin and pyridine derivatives grafted graphene oxide [J]. Chem. Eng. J., 2024, 483: 149316
[1] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[2] 李红蕾, 刘闯, 卢政伟, 褚天义, 陈育秋, 姜肃猛, 宫骏, 裴志亮. Ni-Al2O3/Diamond复合涂层的制备和性能[J]. 材料研究学报, 2025, 39(4): 314-320.
[3] 李庆鹏, 刘佳兴, 安晓云, 李永志, 高萌, 孙洪涛, 王娜. 镀锌紧固件表面硅烷转化膜的制备和性能[J]. 材料研究学报, 2025, 39(4): 296-304.
[4] 王静, 何文政, 杨爽, 耿闻, 任荣, 熊需海. 氩气等离子体处理对芳Ⅲ/环氧复合材料界面性能的影响[J]. 材料研究学报, 2025, 39(3): 185-197.
[5] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[6] 韩珩, 李洪峤, 李鹏, 马国政, 郭伟玲, 刘明. 冷喷涂温度对Ni-Ti3AlC2复合涂层摩擦学性能的影响[J]. 材料研究学报, 2025, 39(1): 44-54.
[7] 黄迪, 牛云松, 李帅, 董志宏, 鲍泽斌, 朱圣龙. 四方相氧化钇稳定氧化锆热障涂层的热循环和热冲击性能及其失效机理[J]. 材料研究学报, 2024, 38(9): 691-700.
[8] 李沅沅, 梁健, 熊自柳, 苗斌, 田秀刚, 齐建军, 郑士建. 新型热镀锌双相钢的合金成分对界面层和镀层结构的影响[J]. 材料研究学报, 2024, 38(6): 446-452.
[9] 张甲, 高明浩, 栾胜家, 徐娜, 常辉, 邓予婷, 侯万良, 常新春. 喷涂粉末对CoNiCrAlY涂层组织和性能的影响[J]. 材料研究学报, 2024, 38(5): 347-355.
[10] 马飞, 王闯, 郭武明, 史祥东, 孙建颖, 庞刚. 碳含量对CrN:a-C多相复合涂层摩擦学性能的影响[J]. 材料研究学报, 2024, 38(4): 297-307.
[11] 陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
[12] 王慧明, 王金龙, 李应举, 张宏毅, 吕晓仁. Al基复合涂层干摩擦磨损的有限元分析[J]. 材料研究学报, 2024, 38(12): 941-949.
[13] 李玉峰, 冯峰, 刘世博, 刘丽爽, 高晓辉. 氮磷共掺杂石墨烯的制备及水性复合涂层的耐蚀性能[J]. 材料研究学报, 2024, 38(11): 861-871.
[14] 陈继弘, 王永利, 熊良银, 宋立新. 316L钢表面低活性Fe-Al涂层的制备[J]. 材料研究学报, 2024, 38(11): 801-810.
[15] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.