Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (4): 251-258    DOI: 10.11901/1005.3093.2024.239
  研究论文 本期目录 | 过刊浏览 |
改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢
张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华()
辽宁工业大学化学与环境工程学院 锦州 121001
Alkali-modified HZSM-5 Zeolite/Cu-ZnO-Al2O3 Bifunctional Catalyst for Hydrogen Production via Steam Reforming of Dimethyl Ether
ZHANG Senhan, WANG Huan, ZHANG Jiakang, FENG Xiaoqian, ZHANG Qijian, ZHAO Yonghua()
School of Chemistry & Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
引用本文:

张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
Senhan ZHANG, Huan WANG, Jiakang ZHANG, Xiaoqian FENG, Qijian ZHANG, Yonghua ZHAO. Alkali-modified HZSM-5 Zeolite/Cu-ZnO-Al2O3 Bifunctional Catalyst for Hydrogen Production via Steam Reforming of Dimethyl Ether[J]. Chinese Journal of Materials Research, 2025, 39(4): 251-258.

全文: PDF(4369 KB)   HTML
摘要: 

用不同浓度的NaOH溶液对HZSM-5进行改性,然后作为固体酸与Cu-ZnO-Al2O3催化剂物理混合制备出改性HZSM-5/Cu-ZnO-Al2O3催化剂,并将其用于二甲醚水蒸气重整制氢(SRD)。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、N2低温吸附-脱附和NH3程序升温脱附(NH3-TPD)等手段表征改性HZSM-5样品及其SRD性能。结果表明,改变NaOH的浓度可调控HZSM-5的酸性和结构性质,进而影响固体酸双功能催化剂的SRD性能。用0.4 mol/L NaOH溶液改性的HZSM-5-0.4与Cu-ZnO-Al2O3组成的双功能催化剂性能良好,在温度为350 ℃、压力为0.1 MPa、空速为3000 mL/(g·h)条件下,初始二甲醚转化率和氢气收率分别为100%和93%,且在反应10 h内性能没有显著降低,表明其稳定性较高。

关键词 复合材料碱改性HZSM-5水蒸气重整二甲醚制氢    
Abstract

A series of alkali-modified HZSM-5 zeolite were prepared via chemical treatment of the parent HZSM-5 with NaOH solution of different concentrations. And then, as solid acid, the alkali-modified HZSM-5 was physically mixed with commercial Cu-ZnO-Al2O3 to obtain bifunctional catalysts of HZSM-5 zeolite/Cu-ZnO-Al2O3 for steam reforming of dimethyl ether (SRD) reaction. The products were systematically characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), N2 adsorption-desorption at low temperature, and NH3 temperature-programmed desorption (NH3-TPD) techniques. The results showed that the acidity and structure of the HZSM-5 could be effectively adjusted by altering the concentration of NaOH, and then affecting the SRD performance of the corresponding bifunctional catalyst. The bifunctional catalyst composed of the HZSM-5-0.4 treated by 0.4 mol/L NaOH and Cu-ZnO-Al2O3 exhibited the best SRD performance, i.e., the initial dimethyl ether conversion and H2 yield reached 100% and 93% under the conditions of reaction temperature 350 oC, pressure 0.1 MPa, space velocity 3000 mL/(g·h), respectively, and dimethyl ether conversion and H2 yield remained basically constant in 10 h, indicating that the catalyst had better stability.

Key wordscomposite    alkali-modified HZSM-5    steam reforming    dimethyl ether    hydrogen production
收稿日期: 2024-05-27     
ZTFLH:  O643.3  
基金资助:国家自然科学基金(22075120);辽宁省应用基础研究计划(2023JH2/101300216)
通讯作者: 赵永华,教授,lgdzyh@163.com,研究方向为多相催化与能源化学
Corresponding author: ZHAO Yonghua, Tel: (0416)4199013, E-mail: lgdzyh@163.com
作者简介: 张森晗,女,2000年生,硕士生
图1  不同HZSM-5-m的XRD谱
SamplesBET surface area / m2·g-1

Pore volume

/ cm3·g-1

Average pore size

/ nm

Relative crystallinitya / %I546 / I451b
HZSM-53970.201.991000.79
HZSM-5-0.23530.342.8685.80.41
HZSM-5-0.42140.5510.1731.80.12
HZSM-5-0.5710.7916.344.30.01
表1  HZSM-5-m的结构和织构特征
图2  不同HZSM-5-m的FT-IR谱
图3  不同HZSM-5-m的N2吸脱附等温线
图4  不同HZSM-5-m的孔径分布
图5  不同HZSM-5-m的SEM照片
图6  不同HZSM-5-m的NH3-TPD谱
图7  HZSM-5-m/Cu-ZnO-Al2O3双功能催化剂的DME转化率和H2收率
图8  HZSM-5-m/Cu-ZnO-Al2O3双功能催化剂的含碳产物选择性
1 Bernay C, Marchand M, Cassir M. Prospects of different fuel cell technologies for vehicle applications [J]. J. Power Sources, 2002, 108(1-2): 139
2 Gao T Y, Zhao Y H, Zheng Z, et al. Acid activation of montmorillonite and its application for production of hydrogen via steam reforming of dimethyl ether [J]. J. Fuel Chem. Technol., 2021, 49(10): 1495
2 高天宇, 赵永华, 郑 择 等. 酸活化蒙脱土在二甲醚水蒸气重整制氢中的应用 [J]. 燃料化学学报, 2021, 49(10): 1495
3 Yang M, Men Y, Li S L, et al. Enhancement of catalytic activity over TiO2-modified Al2O3 and ZnO-Cr2O3 composite catalyst for hydrogen production via dimethyl ether steam reforming [J]. Appl. Catal., 2012, 433-434A: 26
4 Singh S, Jain S, Venkateswaran P S, et al. Hydrogen: a sustainable fuel for future of the transport sector [J]. Renew. Sustain. Energy Rev., 2015, 51: 623
5 Yang W W, Ma X, Tang X Y, et al. Review on developments of catalytic system for methanol steam reforming from the perspective of energy-mass conversion [J]. Fuel, 2023, 345: 128234
6 Long X, Zhang Q J, Liu Z T, et al. Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether [J]. Appl. Catal., 2013, 134-135B: 381
7 Li J, Zhang Q J, Long X, et al. Hydrogen production for fuel cells via steam reforming of dimethyl ether over commercial Cu/ZnO/Al2O3 and zeolite [J]. Chem. Eng. J., 2012, 187: 299
8 Gao T Y, Zhao Y H, Zhang Q J, et al. Zinc oxide modified HZSM-5 as an efficient acidic catalyst for hydrogen production by steam reforming of dimethyl ether [J]. React. Kinet. Mech. Catal., 2019, 128: 235
9 Tanaka Y, Kikuchi R, Takeguchi T, et al. Steam reforming of dimethyl ether over composite catalysts of γ-Al2O3 and Cu-based spinel [J]. Appl. Catal., 2005, 57B: 211
10 Nishiguchi T, Oka K, Matsumoto T, et al. Durability of WO3/ZrO2-CuO/CeO2 catalysts for steam reforming of dimethyl ether [J]. Appl. Catal., 2006, 301A(1) : 66
11 Faungnawakij K, Kikuchi R, Shimoda N, et al. Effect of thermal treatment on activity and durability of CuFe2O4-Al2O3 composite catalysts for steam reforming of dimethyl ether [J]. Angew. Chem. Int. Ed., 2008, 47: 9314
doi: 10.1002/anie.200802809 pmid: 18979476
12 Deng X Q, Yang T T, Zhang Q, et al. A monolith CuNiFe/γ-Al2O3/Al catalyst for steam reforming of dimethyl ether and applied in a microreactor [J]. Int. J. Hydrog. Energy, 2019, 44(5): 2417
13 Kim D, Park G, Choi B, et al. Reaction characteristics of dimethyl ether (DME) steam reforming catalysts for hydrogen production [J]. Int. J. Hydrog. Energy, 2017, 42(49): 29210
14 Shimoda N, Faungnawakij K, Kikuchi R, et al. Degradation and regeneration of copper-iron spinel and zeolite composite catalysts in steam reforming of dimethyl ether [J]. Appl. Catal., 2010, 378A: 234
15 Sheng Q T, Niu Y X, Shen J, et al. Influence of modification methods on porosity, acidity and catalytic properties of HZSM-5 zeolite in dehydration ethanol to ethylene [J]. Acta Pet. Sin. (Pet. Process. Sect.), 2017, 33(2): 242
15 盛清涛, 牛艳霞, 申 峻 等. 改性方法对HZSM-5分子筛孔结构、酸性质及乙醇脱水制乙烯催化性能的影响 [J]. 石油学报(石油加工), 2017, 33(2): 242
16 Wei Z H, Xia T F, Liu M H, et al. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration [J]. Front. Chem. Sci. Eng., 2015, 9(4): 450
doi: 10.1007/s11705-015-1542-2
17 Ahmadpour J, Taghizadeh M. Selective production of propylene from methanol over high-silica mesoporous ZSM-5 zeolites treated with NaOH and NaOH/tetrapropylammonium hydroxide [J]. C. R. Chim., 2015, 18: 834
18 Zhao Y H, Gao T Y, Wang Y J, et al. Zinc supported on alkaline activated HZSM-5 for aromatization reaction [J]. React. Kinet. Mech. Catal., 2018, 125: 1085
19 Sadowska K, Góra-Marek K, Drozdek M, et al. Desilication of highly siliceous zeolite ZSM-5 with NaOH and NaOH/tetrabutylamine hydroxide [J]. Microporous Mesoporous Mater., 2013, 168: 195
20 Wang Y G, Gui J Z, Zhang X T, et al. Synthesis and characterization of nanosized ZSM-5 zeolite [J]. Chin. J. Spectrosc. Lab., 2005, 22(2): 225
20 王荧光, 桂建舟, 张晓彤 等. 纳米ZSM-5分子筛的合成与表征 [J]. 光谱实验室, 2005, 22(2): 225
21 Luo C W, Huang C, Li A, et al. Influence of reaction parameters on the catalytic performance of alkaline-treated zeolites in the novel synthesis of pyridine bases from glycerol and ammonia [J]. Ind. Eng. Chem. Res., 2016, 55: 893
22 Shirazi L, Jamshidi E, Ghasemi M R. The effect of Si/Al ratio of ZSM-5 zeolite on its morphology, acidity and crystal size [J]. Cryst. Res. Technol., 2008, 43: 1300
23 Zhang S G, Higashimoto S, Yamashita H, et al. Characterization of vanadium oxide/ZSM-5 zeolite catalysts prepared by the solid-state reaction and their photocatalytic reactivity: in situ photoluminescence, XAFS, ESR, FT-IR, and UV-vis investigations [J]. J. Phys. Chem. B, 1998, 102: 5590
24 Dumitriu D, Bârjega R, Frunza L, et al. BiO x clusters occluded in a ZSM-5 matrix: preparation, characterization, and catalytic behavior in liquid-phase oxidation of hydrocarbons [J]. J. Catal., 2003, 219: 337
25 Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure Appl. Chem., 2015, 87: 1051
26 Wang Q, Cui Z M, Cao C Y, et al. 0.3 Å makes the difference: dramatic changes in methanol-to-olefin activities between H-ZSM-12 and H-ZSM-22 zeolites [J]. J. Phys. Chem. C, 2011, 115: 24987
27 Luo H X, Zhao Y H, Zhang J K, et al. Oxide-pillared montmorillonite supported Cu catalyst for production of hydrogen via steam reforming of dimethyl ether [J]. Chin. J. Mater. Res., 202438 (11): 872
27 罗洪旭, 赵永华, 张家慷 等. 双功能催化剂(Cu-Co/X-MMT)的制备和性能 [J]. 材料研究学报, 202438 (11): 872
doi: 10.11901/1005.3093.2023.493
28 Faungnawakij K, Tanaka Y, Shimoda N, et al. Influence of solid-acid catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production [J]. Appl. Catal., 2006, 304A: 40
[1] 孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.
[2] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[3] 唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.
[4] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[5] 包秀坤, 史桂梅. NiCo@C(N)/NC纳米复合物的制备及其吸波性能[J]. 材料研究学报, 2025, 39(2): 126-136.
[6] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[7] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[8] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[9] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[10] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[11] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[12] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[13] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[14] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[15] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.