Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (4): 272-280    DOI: 10.11901/1005.3093.2024.059
  研究论文 本期目录 | 过刊浏览 |
一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能
陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方()
江西理工大学稀土学院 赣州 341000
Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics
CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang()
College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, China
引用本文:

陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
Shiyu CHEN, Wei LI, Haiyan KUANG, Shaowei GAO, Dongfang PANG. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. Chinese Journal of Materials Research, 2025, 39(4): 272-280.

全文: PDF(14962 KB)   HTML
摘要: 

用高温固相反应法制备无铅铁电陶瓷0.67BiFe1 - x Lu x O3-0.33BaTiO3 (BF-BT-xLu,x = 0、0.005、0.008、0.010、0.012、0.015、0.020、0.030)并表征其晶体结构和形貌,研究了Lu3+掺杂对其介电、铁电和压电性能的影响。结果表明,引入Lu3+没有使其晶体结构显著改变,各组分仍旧处于四方和三方钙钛矿结构共存的准同型相界(MPB)区域。这种陶瓷的烧结情况良好,结构致密。对铁离子变价和氧空位变化的分析结果表明,引入适量的Lu3+能阻碍Fe3+向Fe2+转变,从而使BF-BT-xLu样品的漏电流降低和电学性能提高。未掺杂的BF-BT具有典型铁电体的P-E电滞回线,剩余极化Pr = 26.47 μC/cm2,矫顽场Ec = 30.45 kV/cm。适量的Lu3+改性使BF-BT体系的铁电性能提高,BF-BT-0.015Lu的剩余极化Pr = 28.66 μC/cm2,矫顽场Ec = 28.12 kV/cm。BF-BT-0.010Lu样品在80 kV/cm下的室温电致应变为0.328%,逆压电系数d33*为410 pm/V。

关键词 无机非金属材料稀土钙钛矿铁电陶瓷    
Abstract

Rare earth ion modification has been widely used to improve the electrical properties of ferro/piezoelectric materials. In this work, Lu3+ doped lead-free ferroelectric ceramics of 0.67BiFe1 - x Lu x O3-0.33BaTiO3 (BF-BT-xLu, x = 0, 0.005, 0.008, 0.010, 0.012, 0.015, 0.020, 0.030) were prepared by using a conventional high-temperature solid-state reaction method. The results of XRD powder diffraction showed that the introduction of Lu3+ ions did not cause significant change of the crystal structure for the Lu3+ doped lead-free ferroelectric ceramics, and of which all the components of ceramics are retained in the morphotropic phase boundary (MPB) region, where tetragonal and rhombohedral perovskite structures coexisted. Microscopic morphology analysis shows that all ceramics were well sintered and have high relative density. By analyzing and comparing the changes in iron ion valence and oxygen vacancies, it can be determined that the incorporation of appropriate amount of Lu3+ ions can effectively hinder the transformation of Fe3+ ions to Fe2+ ions, thereby reducing the leakage current in the BF-BT-xLu ceramics, therewith, improving its electrical performance. Pure BF-BT exhibits P-E hysteresis loops of typical ferroelectrics, with remnant polarization (Pr) = 26.47 μC/cm2, coercive field (Ec) = 30.45 kV/cm. After moderate Lu3+ modification, the ferroelectric properties of the BF-BT system were improved, with Pr = 28.66 μC/cm2, Ec = 28.12 kV/cm for the BF-BT-0.015Lu. By 80 kV/cm at room temperature, the electric field-strain S of BF-BT-0.01Lu is 0.328%, and the high-field piezoelectric coefficient d33* is 410 pm/V. The present study expands the application of rare earth ions in the field of ferroelectric materials and provides an example for further designing high-performance BF-BT lead-free ferroelectrics.

Key wordsinorganic non-metallic materials    rare earth    perovskite    ferroelectric ceramics
收稿日期: 2024-01-26     
ZTFLH:  TQ174  
基金资助:国家自然科学基金(51702317);江西省自然科学基金(20212BAB214019)
通讯作者: 庞东方,副教授,18970786924@163.com,研究方向为高性能铁电压电材料
Corresponding author: PANG Dongfang, Tel: 18970786924, E-mail: 18970786924@163.com
作者简介: 陈室雨,男,2002年生,本科生
图1  BF-BT-xLu的XRD谱和(200)晶面衍射谱的局部放大谱
图2  BF-BT-xLu陶瓷的断面SEM照片(a) x = 0 (b) x = 0.005 (c) x = 0.008 (d) x = 0.010 (e) x = 0.012 (f) x = 0.015 (g) x = 0.020 (h) x = 0.030
图3  BF-BT-0.015Lu陶瓷的能谱(EDS)的能谱
图4  BF-BT-xLu陶瓷Fe2+/Fe3+峰位的XPS谱
图5  BF-BT-0.02Lu陶瓷O 1s的XPS谱和BF-BT-xLu陶瓷中氧空位的占比
图6  BF-BT-0.015Lu陶瓷在不同频率下介电常数图和介电损耗图随温度的变化
图7  BF-BT-xLu压电陶瓷在80 kV/cm下的室温电滞回线、Pr-Ec关系、J-E关系以及双极应变
图8  BF-BT-xLu陶瓷在不同温度下的P-E回线和双极应变
图9  BF-BT-0.010Lu陶瓷与其它BF-BT基陶瓷d33*的比较
1 Baptista F G, Filho J V. A new impedance measurement system for PZT-based structural health monitoring [J]. IEEE. T. Instrum. Meas., 2009, 58(10): 3602
2 Ali A I, Hassan M M, Goda M G, et al. Preparation, structural and dielectric properties of nanocomposite Al2O3/BaTiO3 for multilayer ceramic capacitors applications [J]. J. Mater. Res. Technol., 2022, 18: 2083
3 Jiang D H, Luo F, Liu Y S, et al. Ultrahigh strain in PZ-PT-BNT piezoelectric ceramic [J]. Ceram. Int., 2024, 502B: 3803
4 Wang T, Jin L, Tian Y, et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage [J]. Mater. Lett., 2014, 137: 79
5 Yoo J, Oh D, Jeong Y, et al. Dielectric and piezoelectric characteristics of lead-free Bi0.5(Na0.84K0.16)0.5TiO3 ceramics substituted with Sr [J]. Mater. Lett., 2004, 58(29): 3831
6 Khan H A, Ullah S, Rehman G, et al. First principle study of band gap nature, spontaneous polarization, hyperfine field and electric field gradient of desirable multiferroic bismuth ferrite (BiFeO3) [J]. J. Phys. Chem. Solids., 2021, 148: 109737
7 Lin D, Zheng Q J, Li Y, et al. Microstructure, ferroelectric and piezoelectric properties of Bi0.5K0.5TiO3-modified BiFeO3-BaTiO3 lead-free ceramics with high curie temperature [J]. J. Eur. Ceram. Soc., 2013, 33(15): 3023
8 Wang L, Liang R, Zhou Z, et al. Thermally stable electrostrain in BiFeO3-BaTiO3-based high temperature lead-free piezoceramics [J]. Appl. Phys. Lett., 2019, 115(8): 082902
9 Zeng F F, Fan G F, Hao M M, et al. Conductive property of BiFeO3-BaTiO3 ferroelectric ceramics with high curie temperature [J]. J. Alloy. Compd., 2020, 831: 154853
10 Leontsev S O, Eitel R E. Progress in engineering high strain lead-free piezoelectric ceramics [J]. Sci. Technol. Adv. Mat., 2010, 11(4): 044302
11 Peng X Y, Tang Y C, Zhang B P, et al. High curie temperature BiFeO3-BaTiO3 lead-free piezoelectric ceramics: Ga3+ doping and enhanced insulation properties [J]. J. Appl. Phys., 2021, 130(14): 1
12 Xun B W, Song A Z, Yu J R, et al. Lead-free BiFeO3-BaTiO3 ceramics with high curie temperature: Fine compositional tuning across the phase boundary for high piezoelectric charge and strain coefficients [J]. ACS. Appl. Mater. Inter., 2021, 13(3): 4192
13 Xun B W, Tang Y C, Chen J Y, et al. Enhanced resistance in Bi(Fe1 - x Sc x )O3-0.3BaTiO3 lead-free piezoelectric ceramics: Facile analysis and reduction of oxygen vacancy [J]. J. Eur. Ceram. Soc., 2019, 39(14): 4085
14 Wang L, Liang R H, Zhou Z Y, et al. High electrostrain with high curie temperature in BiFeO3-BaTiO3-based ceramics [J]. Scr. Mater., 2019, 164: 62
15 Kuang H Y, He X, Oleg V, et al. Large electric field-induced strain and excellent photoluminescence properties of Pr-modified 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 lead-free ferroelectric ceramics [J]. Ceram. Int., 2023, 49(23): 39576
16 Li F. Ultrahigh piezoelectricity in ferroelectric ceramics by design [J]. Nat. Mater., 2018, 17(4): 349
doi: 10.1038/s41563-018-0034-4 pmid: 29555999
17 Chen Z T, Bu X Y, Ruan B X, et al. Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics [J]. J. Eur. Ceram. Soc., 2020, 40(15): 5450
18 Li C Y, Zheng T, Wu J G. Competitive mechanism of temperature-dependent electrical properties in BiFeO3-BaTiO3 ferroelectrics controlled by domain evolution [J]. Acta. Mater., 2021, 206: 116601
19 Yue Y G, Xu X Z, Zhang M, et al. Grain size effects in Mn-modified 0.67BiFeO3-0.33BaTiO3 ceramics [J]. ACS. Appl. Mater. Inter., 2021, 13(48): 57548
20 Liu S, Feng W W, Li J H, et al. Realizing excellent energy storage performance and fatigue endurance in Sr0.7Sm0.2TiO3 modified 0.67BiFeO3-0.33BaTiO3 lead-free relaxor ceramics [J]. J. Eur. Ceram. Soc., 2022, 42(16): 7430
21 Zhang Y, Huang R X, Liang Z H, et al. Reduction inhibition of Fe3+ ions in mn-doped 0.7BiFeO3-0.3BaTiO3 ceramics by direct reaction sintering [J]. Ceram. Int., 2022, 48(18): 26696
22 Guo Y, Xiao P, Wen R, et al. Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics [J]. J. Mater. Chem. C, 2015, 3(22): 5811
23 He X, Chen C, Wang L, et al. Giant electromechanical response in layered ferroelectrics enabled by asymmetric ferroelastic switching [J]. Mate. Today., 2022, 58: 48
24 Kang F, Zhang L X, Huang B, et al. Enhanced electromechanical properties of SrTiO3-BiFeO3-BaTiO3 ceramics via relaxor behavior and phase boundary design [J]. J. Eur. Ceram. Soc., 2020, 40(4): 1198
25 Tang L, Zhou X F, Habib M, et al. Phase structure and electrical properties of BiFeO3-BaTiO3 ceramics near the morphotropic phase boundary [J]. Ceram. Int., 2023, 49(19): 31965
26 Zhao C, Li Z, Wu J. Role of trivalent acceptors and pentavalent donors in colossal permittivity of titanium dioxide ceramics [J]. J. Mater. Chem. C., 2019, 7(14): 4235
27 Zhou Q, Zhou C, Yang H, et al. Dielectric, ferroelectric, and piezoelectric properties of Bi(Ni1/2Ti1/2)O3-modified BiFeO3- BaTiO3 Ceramics with high curie temperature [J]. J. Am. Ceram. Soc., 2012, 95(12): 3889
28 Li Q J, Ji S S, Wang D D, et al. Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors [J]. J. Eur. Ceram. Soc., 2021, 41(1): 387
29 Guo H T, Zeng F F, Xiao W R, et al. Optimized energy storage performance in BF-BT-based lead-free ferroelectric ceramics with local compositional fluctuation [J]. J. Eur. Ceram. Soc., 2023, 43(11): 4774
30 Liu G, Tang M Y, Hou X, et al. Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process [J]. Chem. Eng. J., 2021, 412: 127555
31 Zeng F R, Jiang X P, Chen C, et al. Effect of Er3+ doping on the properties of Bi3Ti1.5W0.5O9-Bi4Ti3O12 symbiotic lead-free piezoelectric ceramics [J]. Chin. J. Mater. Res., 2022, 36(10): 760
31 曾仁芬, 江向平, 陈 超 等. Er3+掺杂对Bi3Ti1.5W0.5O9-Bi4Ti3O12共生无铅压电陶瓷性能的影响 [J]. 材料研究学报, 2022, 36(10): 760
doi: 10.11901/1005.3093.2021.302
32 Bai X Z, Chen Z T, Zheng P, et al. High recoverable energy storage density in nominal (0.67-x)BiFeO3-0.33BaTiO3-xBaBi2Nb2O9 lead-free composite ceramics [J]. Ceram. Int., 2021, 47(16): 23116
33 Xie L X, Tan Z, Wu X J, et al. Investigation of nonstoichiometric Fe on the ferroelectric properties of BiFeO3-based piezoelectric ceramics [J]. J. Solid. State. Chem., 2021, 304: 122614
34 Zhu L F, Zhang B P, Duan J Q, et al. Enhanced piezoelectric and ferroelectric properties of BiFeO3-BaTiO3 lead-free ceramics by optimizing the sintering temperature and dwell time [J]. J. Eur. Ceram. Soc., 2018, 38(10): 3463
35 Yi W B, Lu Z Y, Liu X Y, et al. Effects of Ga content on the structure and electrical performances of 0.69BiFe1 - x Ga x O3-0.31BaTiO3 lead-free ceramics [J]. Ceram. Int., 2021, 47(20): 28455
36 Ahmed T, Khan S A, Bae J, et al. Role of bi chemical pressure on electrical properties of BiFeO3-BaTiO3-based ceramics [J]. Solid. State. Sci., 2021, 114: 106562
37 Zhang M, Zhang X Y, Das S, et al. High remanent polarization and temperature-insensitive ferroelectric remanent polarization in BiFeO3-based lead-free perovskite [J]. J. Mater. Chem. C., 2019, 7(34): 10551
doi: 10.1039/c9tc02650a
38 Ryu G H, Hussain A, Lee M H, et al. Lead-free high performance Bi(Zn0.5Ti0.5)O3-modified BiFeO3-BaTiO3 piezoceramics [J]. J. Eur. Ceram. Soc., 2018, 38(13): 4414
39 Chen J, Cui B, Daniels J E, et al. Understanding the strain mechanisms in BiFeO3-BaTiO3 piezoelectric ceramics near the morphotropic phase boundary [J]. J. Eur. Ceram. Soc., 2023, 43(11): 4766
40 Chen J Y, Luo F, Liu Y S, et al. Enhanced piezoelectric properties in coarse-grained 0.7Bi(Fe0.9985Mn0.0015)O3-0.3BaTiO3 ceramics [J]. J. Alloy. Compd., 2023, 960: 170845
41 Ferrero G, Astafiev K, Ringgaard E, et al. Piezoelectric properties of mechanochemically processed 0.67BiFeO3-0.33BaTiO3 ceramics [J]. J. Eur. Ceram. Soc., 2023, 43(2): 350
42 Habib M, Akram F, Ahmad P, et al. Donor multiple effects on the ferroelectric and piezoelectric performance of lead-free BiFeO3-BaTiO3 ceramics [J]. Mater. Lett. 2022, 315: 131950
43 Lee M, Kim D, Park J, et al. High-performance lead-free piezoceramics with high curie temperatures [J]. Adv. Mater., 2015, 27(43): 6976
doi: 10.1002/adma.201502424
44 Lu Y S, Dai J Q. Enhanced electrical properties of (Zn, Mn)-modified BiFeO3-BaTiO3 lead-free ceramics prepared via sol-gel method and two-step sintering [J]. J. Alloy. Compd., 2022, 899: 163387
45 Murakami S, Wang D, Mostaed A, et al. High strain (0.4%) Bi(Mg2/3Nb1/3)O3‐BaTiO3‐BiFeO3 lead‐free piezoelectric ceramics and multilayers [J]. J. Am. Ceram. Soc., 2018, 101(12): 5428
46 Zhang M, Zhang X Y, Qi X W, et al. Enhanced ferroelectric, magnetic and magnetoelectric properties of multiferroic BiFeO3-BaTiO3-LaFeO3 ceramics [J]. Ceram. Int., 2018, 44(17): 21269
47 Ni F, Xu L X, Zhu K, et al. Improved piezoelectric performance via orientation regulation in novel BNT-BT-SBT thin film [J]. J. Alloy. Compd., 2023, 934: 167936
[1] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[2] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[3] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[4] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[5] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[6] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[7] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[8] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[9] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[10] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[11] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[12] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[13] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[14] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[15] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.