|
|
一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能 |
陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方( ) |
江西理工大学稀土学院 赣州 341000 |
|
Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics |
CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang( ) |
College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, China |
引用本文:
陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
Shiyu CHEN,
Wei LI,
Haiyan KUANG,
Shaowei GAO,
Dongfang PANG.
Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. Chinese Journal of Materials Research, 2025, 39(4): 272-280.
1 |
Baptista F G, Filho J V. A new impedance measurement system for PZT-based structural health monitoring [J]. IEEE. T. Instrum. Meas., 2009, 58(10): 3602
|
2 |
Ali A I, Hassan M M, Goda M G, et al. Preparation, structural and dielectric properties of nanocomposite Al2O3/BaTiO3 for multilayer ceramic capacitors applications [J]. J. Mater. Res. Technol., 2022, 18: 2083
|
3 |
Jiang D H, Luo F, Liu Y S, et al. Ultrahigh strain in PZ-PT-BNT piezoelectric ceramic [J]. Ceram. Int., 2024, 502B: 3803
|
4 |
Wang T, Jin L, Tian Y, et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage [J]. Mater. Lett., 2014, 137: 79
|
5 |
Yoo J, Oh D, Jeong Y, et al. Dielectric and piezoelectric characteristics of lead-free Bi0.5(Na0.84K0.16)0.5TiO3 ceramics substituted with Sr [J]. Mater. Lett., 2004, 58(29): 3831
|
6 |
Khan H A, Ullah S, Rehman G, et al. First principle study of band gap nature, spontaneous polarization, hyperfine field and electric field gradient of desirable multiferroic bismuth ferrite (BiFeO3) [J]. J. Phys. Chem. Solids., 2021, 148: 109737
|
7 |
Lin D, Zheng Q J, Li Y, et al. Microstructure, ferroelectric and piezoelectric properties of Bi0.5K0.5TiO3-modified BiFeO3-BaTiO3 lead-free ceramics with high curie temperature [J]. J. Eur. Ceram. Soc., 2013, 33(15): 3023
|
8 |
Wang L, Liang R, Zhou Z, et al. Thermally stable electrostrain in BiFeO3-BaTiO3-based high temperature lead-free piezoceramics [J]. Appl. Phys. Lett., 2019, 115(8): 082902
|
9 |
Zeng F F, Fan G F, Hao M M, et al. Conductive property of BiFeO3-BaTiO3 ferroelectric ceramics with high curie temperature [J]. J. Alloy. Compd., 2020, 831: 154853
|
10 |
Leontsev S O, Eitel R E. Progress in engineering high strain lead-free piezoelectric ceramics [J]. Sci. Technol. Adv. Mat., 2010, 11(4): 044302
|
11 |
Peng X Y, Tang Y C, Zhang B P, et al. High curie temperature BiFeO3-BaTiO3 lead-free piezoelectric ceramics: Ga3+ doping and enhanced insulation properties [J]. J. Appl. Phys., 2021, 130(14): 1
|
12 |
Xun B W, Song A Z, Yu J R, et al. Lead-free BiFeO3-BaTiO3 ceramics with high curie temperature: Fine compositional tuning across the phase boundary for high piezoelectric charge and strain coefficients [J]. ACS. Appl. Mater. Inter., 2021, 13(3): 4192
|
13 |
Xun B W, Tang Y C, Chen J Y, et al. Enhanced resistance in Bi(Fe1 - x Sc x )O3-0.3BaTiO3 lead-free piezoelectric ceramics: Facile analysis and reduction of oxygen vacancy [J]. J. Eur. Ceram. Soc., 2019, 39(14): 4085
|
14 |
Wang L, Liang R H, Zhou Z Y, et al. High electrostrain with high curie temperature in BiFeO3-BaTiO3-based ceramics [J]. Scr. Mater., 2019, 164: 62
|
15 |
Kuang H Y, He X, Oleg V, et al. Large electric field-induced strain and excellent photoluminescence properties of Pr-modified 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 lead-free ferroelectric ceramics [J]. Ceram. Int., 2023, 49(23): 39576
|
16 |
Li F. Ultrahigh piezoelectricity in ferroelectric ceramics by design [J]. Nat. Mater., 2018, 17(4): 349
doi: 10.1038/s41563-018-0034-4
pmid: 29555999
|
17 |
Chen Z T, Bu X Y, Ruan B X, et al. Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics [J]. J. Eur. Ceram. Soc., 2020, 40(15): 5450
|
18 |
Li C Y, Zheng T, Wu J G. Competitive mechanism of temperature-dependent electrical properties in BiFeO3-BaTiO3 ferroelectrics controlled by domain evolution [J]. Acta. Mater., 2021, 206: 116601
|
19 |
Yue Y G, Xu X Z, Zhang M, et al. Grain size effects in Mn-modified 0.67BiFeO3-0.33BaTiO3 ceramics [J]. ACS. Appl. Mater. Inter., 2021, 13(48): 57548
|
20 |
Liu S, Feng W W, Li J H, et al. Realizing excellent energy storage performance and fatigue endurance in Sr0.7Sm0.2TiO3 modified 0.67BiFeO3-0.33BaTiO3 lead-free relaxor ceramics [J]. J. Eur. Ceram. Soc., 2022, 42(16): 7430
|
21 |
Zhang Y, Huang R X, Liang Z H, et al. Reduction inhibition of Fe3+ ions in mn-doped 0.7BiFeO3-0.3BaTiO3 ceramics by direct reaction sintering [J]. Ceram. Int., 2022, 48(18): 26696
|
22 |
Guo Y, Xiao P, Wen R, et al. Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics [J]. J. Mater. Chem. C, 2015, 3(22): 5811
|
23 |
He X, Chen C, Wang L, et al. Giant electromechanical response in layered ferroelectrics enabled by asymmetric ferroelastic switching [J]. Mate. Today., 2022, 58: 48
|
24 |
Kang F, Zhang L X, Huang B, et al. Enhanced electromechanical properties of SrTiO3-BiFeO3-BaTiO3 ceramics via relaxor behavior and phase boundary design [J]. J. Eur. Ceram. Soc., 2020, 40(4): 1198
|
25 |
Tang L, Zhou X F, Habib M, et al. Phase structure and electrical properties of BiFeO3-BaTiO3 ceramics near the morphotropic phase boundary [J]. Ceram. Int., 2023, 49(19): 31965
|
26 |
Zhao C, Li Z, Wu J. Role of trivalent acceptors and pentavalent donors in colossal permittivity of titanium dioxide ceramics [J]. J. Mater. Chem. C., 2019, 7(14): 4235
|
27 |
Zhou Q, Zhou C, Yang H, et al. Dielectric, ferroelectric, and piezoelectric properties of Bi(Ni1/2Ti1/2)O3-modified BiFeO3- BaTiO3 Ceramics with high curie temperature [J]. J. Am. Ceram. Soc., 2012, 95(12): 3889
|
28 |
Li Q J, Ji S S, Wang D D, et al. Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors [J]. J. Eur. Ceram. Soc., 2021, 41(1): 387
|
29 |
Guo H T, Zeng F F, Xiao W R, et al. Optimized energy storage performance in BF-BT-based lead-free ferroelectric ceramics with local compositional fluctuation [J]. J. Eur. Ceram. Soc., 2023, 43(11): 4774
|
30 |
Liu G, Tang M Y, Hou X, et al. Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process [J]. Chem. Eng. J., 2021, 412: 127555
|
31 |
Zeng F R, Jiang X P, Chen C, et al. Effect of Er3+ doping on the properties of Bi3Ti1.5W0.5O9-Bi4Ti3O12 symbiotic lead-free piezoelectric ceramics [J]. Chin. J. Mater. Res., 2022, 36(10): 760
|
31 |
曾仁芬, 江向平, 陈 超 等. Er3+掺杂对Bi3Ti1.5W0.5O9-Bi4Ti3O12共生无铅压电陶瓷性能的影响 [J]. 材料研究学报, 2022, 36(10): 760
doi: 10.11901/1005.3093.2021.302
|
32 |
Bai X Z, Chen Z T, Zheng P, et al. High recoverable energy storage density in nominal (0.67-x)BiFeO3-0.33BaTiO3-xBaBi2Nb2O9 lead-free composite ceramics [J]. Ceram. Int., 2021, 47(16): 23116
|
33 |
Xie L X, Tan Z, Wu X J, et al. Investigation of nonstoichiometric Fe on the ferroelectric properties of BiFeO3-based piezoelectric ceramics [J]. J. Solid. State. Chem., 2021, 304: 122614
|
34 |
Zhu L F, Zhang B P, Duan J Q, et al. Enhanced piezoelectric and ferroelectric properties of BiFeO3-BaTiO3 lead-free ceramics by optimizing the sintering temperature and dwell time [J]. J. Eur. Ceram. Soc., 2018, 38(10): 3463
|
35 |
Yi W B, Lu Z Y, Liu X Y, et al. Effects of Ga content on the structure and electrical performances of 0.69BiFe1 - x Ga x O3-0.31BaTiO3 lead-free ceramics [J]. Ceram. Int., 2021, 47(20): 28455
|
36 |
Ahmed T, Khan S A, Bae J, et al. Role of bi chemical pressure on electrical properties of BiFeO3-BaTiO3-based ceramics [J]. Solid. State. Sci., 2021, 114: 106562
|
37 |
Zhang M, Zhang X Y, Das S, et al. High remanent polarization and temperature-insensitive ferroelectric remanent polarization in BiFeO3-based lead-free perovskite [J]. J. Mater. Chem. C., 2019, 7(34): 10551
doi: 10.1039/c9tc02650a
|
38 |
Ryu G H, Hussain A, Lee M H, et al. Lead-free high performance Bi(Zn0.5Ti0.5)O3-modified BiFeO3-BaTiO3 piezoceramics [J]. J. Eur. Ceram. Soc., 2018, 38(13): 4414
|
39 |
Chen J, Cui B, Daniels J E, et al. Understanding the strain mechanisms in BiFeO3-BaTiO3 piezoelectric ceramics near the morphotropic phase boundary [J]. J. Eur. Ceram. Soc., 2023, 43(11): 4766
|
40 |
Chen J Y, Luo F, Liu Y S, et al. Enhanced piezoelectric properties in coarse-grained 0.7Bi(Fe0.9985Mn0.0015)O3-0.3BaTiO3 ceramics [J]. J. Alloy. Compd., 2023, 960: 170845
|
41 |
Ferrero G, Astafiev K, Ringgaard E, et al. Piezoelectric properties of mechanochemically processed 0.67BiFeO3-0.33BaTiO3 ceramics [J]. J. Eur. Ceram. Soc., 2023, 43(2): 350
|
42 |
Habib M, Akram F, Ahmad P, et al. Donor multiple effects on the ferroelectric and piezoelectric performance of lead-free BiFeO3-BaTiO3 ceramics [J]. Mater. Lett. 2022, 315: 131950
|
43 |
Lee M, Kim D, Park J, et al. High-performance lead-free piezoceramics with high curie temperatures [J]. Adv. Mater., 2015, 27(43): 6976
doi: 10.1002/adma.201502424
|
44 |
Lu Y S, Dai J Q. Enhanced electrical properties of (Zn, Mn)-modified BiFeO3-BaTiO3 lead-free ceramics prepared via sol-gel method and two-step sintering [J]. J. Alloy. Compd., 2022, 899: 163387
|
45 |
Murakami S, Wang D, Mostaed A, et al. High strain (0.4%) Bi(Mg2/3Nb1/3)O3‐BaTiO3‐BiFeO3 lead‐free piezoelectric ceramics and multilayers [J]. J. Am. Ceram. Soc., 2018, 101(12): 5428
|
46 |
Zhang M, Zhang X Y, Qi X W, et al. Enhanced ferroelectric, magnetic and magnetoelectric properties of multiferroic BiFeO3-BaTiO3-LaFeO3 ceramics [J]. Ceram. Int., 2018, 44(17): 21269
|
47 |
Ni F, Xu L X, Zhu K, et al. Improved piezoelectric performance via orientation regulation in novel BNT-BT-SBT thin film [J]. J. Alloy. Compd., 2023, 934: 167936
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|