Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (2): 121-129    DOI: 10.11901/1005.3093.2023.186
  研究论文 本期目录 | 过刊浏览 |
奥氏体化温度对含铜高碳马氏体不锈钢的组织和性能的影响
郝文俊1, 敬和民1(), 席通2(), 杨春光2, 杨柯2
1.安徽工业大学材料科学与工程学院 马鞍山 243000
2.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel
HAO Wenjun1, JING Hemin1(), XI Tong2(), YANG Chunguang2, YANG Ke2
1.School of Materials Science and Engineering. Anhui University of Technology, Ma Anshan 243000, China
2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research. Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

郝文俊, 敬和民, 席通, 杨春光, 杨柯. 奥氏体化温度对含铜高碳马氏体不锈钢的组织和性能的影响[J]. 材料研究学报, 2024, 38(2): 121-129.
Wenjun HAO, Hemin JING, Tong XI, Chunguang YANG, Ke YANG. Effect of Austenitizing Temperature on Microstructure and Properties of High Carbon Cu-bearing Martensitic Stainless Steel[J]. Chinese Journal of Materials Research, 2024, 38(2): 121-129.

全文: PDF(18389 KB)   HTML
摘要: 

使用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、电子背散射衍射(EBSD)和透射电子显微镜(TEM)等手段对高碳马氏体不锈钢进行表征,研究了添加铜(Cu)对其在不同奥氏体化温度下组织的变化,并分析了其强韧性和耐蚀性。结果表明:随着奥氏体化温度的升高合金中碳化物的含量降低,残余奥氏体的含量提高。Cu的添加促进了分布在基体上的小尺寸碳化物的析出,且使合金中残余奥氏体的含量显著提高。残余奥氏体的软化作用大于马氏体的强化作用,使含Cu高碳马氏体不锈钢的硬度稍有降低,但是其室温冲击功由8Cr18MoV的1.5 J提高到8Cr18MoV-3.1Cu的9.1 J,其韧性也大幅度提高。同时,残余奥氏体的增加使含Cu钢的自腐蚀电位有所降低。

关键词 金属材料含铜高碳马氏体不锈钢奥氏体化硬度耐蚀性残余奥氏体    
Abstract

The effect of copper (Cu) addition on the microstructure, mechanical properties and corrosion resistance of high carbon Cu-bearing martensitic stainless steels, being subjected to austenitizing treatment at different temperatures was investigated by means of optical microscopy (OM), scanning electron microscope, (SEM), X-Ray diffraction (XRD), electron back scattered diffraction (EBSD) and transmission electron microscope (TEM). The results show that the fraction of carbides decreases and the content of retained austenite increases gradually with the increase of austenitizing temperature. The addition of Cu has a positive effect on the amount of precipitation for small size carbides, which distributed in the matrix, and increases the retained austenite significantly. The hardness of high carbon Cu-bearing martensitic stainless steel decreases slightly after Cu addition, because the softening effect of retained austenite is greater than the strengthening effect of martensite. Meanwhile, the impact absorption energy increase from 1.5 J to 9.1 J, indicating that the toughness of the steel was enhanced significantly. Besides, the free-corrosion potential of the Cu-bearing stainless steels decreases due to the increase of retained austenite volume fraction.

Key wordsmetallic materials    martensitic stainless steel    austenitizing temperature    hardness    corrosion resistance    retained austenite
收稿日期: 2023-03-20     
ZTFLH:  TG161  
基金资助:国家自然科学基金(52101293)
通讯作者: 席通,副研究员,txi@imr.ac.cn,研究方向为抗菌金属的成分设计及变形工艺;
敬和民,教授,jinghemin@.ahut.edu.cn,研究方向为抗菌金属材料和表面工程研究
Corresponding author: XI Tong, Tel: (024)23971899, E-mail: txi@imr.ac.cn;
JING Hemin, Tel: (0555)2311570, E-mail: jinghemin@.ahut.edu.cn
作者简介: 郝文俊,男,1996年生,硕士
MaterialsCSiCrMoVCuFe
8Cr18MoV0.870.4817.840.890.10-Bal.
8Cr18MoV-2.0Cu0.790.5117.970.930.102.00Bal.
8Cr18MoV-3.1Cu0.800.4917.620.870.103.10Bal.
表1  实验用钢的化学成分
图1  8Cr18MoV及8Cr18MoV-3.1Cu在不同奥氏体化温度下的金相组织照片
图2  8Cr18MoV、8Cr18MoV-2.0Cu和8Cr18MoV-3.1Cu在不同奥氏体化温度下的显微组织照片
图3  实验用钢在不同奥氏体化温度下碳化物的含量、小尺寸(< 1 μm)碳化物的变化趋势以及1075℃奥氏体化温度下8Cr18MoV和8Cr18MoV-3.1Cu中碳化物的类型
图4  1075℃奥氏体化温度下8Cr18MoV-2.0Cu中碳化物的TEM照片
图5  不同奥氏体化温度下8Cr18MoV、8Cr18MoV-2.0Cu以及8Cr18MoV-3.1Cu的XRD谱和残余奥氏体含量的变化
图6  实验用钢在1075℃奥氏体化温度下的IPF图及其对应的相含量
图7  试验用钢在不同温度下的硬度和硬度-冲击功的变化趋势
图8  实验钢在1075℃奥氏体化温度下的冲击断口形貌
图9  8Cr18MoV在不同奥氏体化温度下及8Cr18MoV-2.0Cu和8Cr18MoV-3.1Cu在1075℃奥氏体化温度下的动电位极化曲线和电化学参数变化曲线
Materials (Temperature)Epit / mVEcorr / mV
8Cr18MoV—975oC-95.40-240.9
8Cr18MoV—1025oC-32.02-255.0
8Cr18MoV—1075oC53.93-215.7
8Cr18MoV—1125oC99.13-260.2
8Cr18MoV(2.0Cu)—1075oC40.37-253.9
8Cr18MoV(3.1Cu)—1075oC71.96-342.1
表2  不同材料的电化学参数
1 Shen M D, Xiao C H, Jian Z, et al. Microstructure and mechanical properties of martensitic stainless steel 6CrlSMoV [J]. J. Iron Steel Res, 2012, 19(3): 56
doi: 10.1016/S1006-706X(12)60074-0
2 Cheng Y, Ding H, Zhu S G. Study on Strengthening Methods for cutting edge of 3Cr13 Stainless steel [J]. Hot Work. Technol., 2018, 47(4): 80
2 成 瑜, 丁 浩, 朱世根. 3Cr13不锈钢刃口的强化方法研究 [J]. 热加工工艺, 2018, 47(4): 80
3 Lian, Yong et al. Effect of tempering treatment on atmospheric corrosion behavior of 3Cr13 martensitic stainless steel in marine environment [J]. J. Mater. Eng. Perform., 2022, 31(6): 4963
doi: 10.1007/s11665-022-06597-8
4 Barlow L D. The effect of austenitising and tempering parameters on the microstructure and hardness of martensitic stainless steel AISI 420 [D]. University of Pretoria, 2010
5 Zhang E H, Zhang H L. Martensitic stainless steel development status and trends [J]. Coal Mine Machinery, 2014, 35(12): 16
5 张二红, 张华龙. 马氏体不锈钢发展现状与趋势 [J]. 煤矿机械, 2014, 35(12): 16
6 Zhu Q, Li J, Shi C, et al. Effect of quenching process on the microstructure and hardness of high-carbon martensitic stainless steel [J]. J. Mater. Eng. Perform., 2015, 24: 4313
doi: 10.1007/s11665-015-1723-7
7 Yao D. Evolution of the microstructure of high carbon martensitic stainless ateel used as a cutlery material during manufacturing process [D]. Beijing: University of Science and Technology Beijing. 2016
7 姚 迪. 刀剪用高碳马氏体不锈钢生产过程组织演变行为研究[D]. 北京: 北京科技大学, 2016
8 O'Brien J M, Hosford W F. Spheroidization cycles for medium carbon steels [J]. Metall. Mater. Trans. A., 2002, 33: 1255
9 Song H D, Li J, Shi C B, et al. Evolution of inclusions in 8Cr13MoV steel during ESR process [J]. Iron, 2016, 51(8): 41
9 宋惠东, 李 晶, 史成斌 等. 8Cr13MoV钢电渣重熔过程中夹杂物行为 [J]. 钢铁, 2016, 51(8): 41
10 Li H J, Wang B Q, Song X Y, et al. New spheroidizing technique of ultra-high carbon steel with aluminum addition [J]. J. Iron. Steel. Res., International: 2006, 13(3): 9
11 Li Y B, Wang F M, Li C R. Effect of Cerium on Grain in low chromium ferritic steinless steel [J]. Zhonggua Xitu Xuabao, 2009, 27(1): 123
11 李亚波, 王福明, 李长荣. 铈对低铬铁素体不锈钢晶粒和碳化物的影响 [J]. 中国稀土学报, 2009, 27(1): 123
12 Čatipović N, Živković D, Dadić Z, et al. Effect of copper and heat treatment on microstructure of austempered ductile iron [J]. Trans. Indian. Inst. Met., 2021, 74: 1455
doi: 10.1007/s12666-021-02225-6
13 Hao X X, Xi T, Zhang H Z, et al. Effect of quenching temperature on microstructure and properties of Cu-bearing 5Cr15MoV martensitic stainless steel [J]. Chin. J. Mater. Res., 2022, 35(12): 933
13 郝欣欣, 席 通, 张宏镇 等. 淬火温度对含铜5Cr15MoV马氏体不锈钢性能的影响 [J]. 材料研究学报, 2022, 35(12): 933
14 Hao X, Xi T, Xu Z, et al. Effect of tempering temperature on the microstructure, corrosion resistance, and antibacterial properties of Cu-bearing martensitic stainless steel [J]. Materials and Corrosion, 2021, 72(10): 1668
15 Kim M, Lee K. Effect of heat treatment on microstructure, mechanical property and corrosion behavior of STS 440C martensitic stainless steel [J]. Korean J. Mater. Res., 2021, 31(1): 29
doi: 10.3740/MRSK.2021.31.1.29
16 Dong Z Y, Wang R, Kang Y, et al. Effect of high temperature homogenization on carbide morphology and mechanical properties of 1.3C-5Cr-0.7Mo-0.5V steel [J]. Heat Treat. Met., 2020, 45(12): 69
16 董子尧, 王 睿, 康 燕 等. 高温均匀化处理对1.3C-5Cr-0.7Mo-0.6V钢中碳化物形貌及力学性能的影响 [J]. 金属热处理, 2020, 45(12): 69
17 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46(12): 2817
doi: 10.2320/matertrans.46.2817
18 Yao Mi. Effect of Cu、Si、on the content of retained austenite of austempered ductile iron [J]. Sceipta. Metall. Mater., 1995, 32(9): 1313
19 Luo L J, Hu K H. Effects of retained austenite on impact and wear property of ZG30CrMnSiMoNi steel [J]. Hor Work Technol., 2023, 52(12): 61
19 罗灵杰, 胡开华. 残余奥氏体对ZG30CrMnSiMoNi钢冲击和磨损性能的影响 [J]. 热加工工艺, 2023, 52(12): 61
20 Yang Y D. Research on microstructure evolution of cutlery used high carbon martensitic stainless steel [D]. Shanghai: Shanghai University, 2020
20 杨玉丹. 刀具用高碳马氏体不锈钢的组织演变研究 [D]. 上海: 上海大学, 2020
21 Bonagani, Sunil, Kumar, et al. Influence of tempering treatment on microstructure and pitting corrosion of 13wt.%Cr martensitic stainless steel [J]. Corros. Sci., 2018, (131): 340
22 Li H D, Zhang T Y, Liu W, et al. Effect of deep cryogenic treatment on microstructure and corrosion resistance of 440C martensitic stainless steel [J]. Heat Treat. Met. 2022(008)047: 152
22 李慧东, 张覃轶, 刘 伟 等. 深冷处理对440C马氏体不锈钢组织和耐蚀性的影响 [J]. 金属热处理, 2022(008)047: 152
[1] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[2] 郑明瑞, 李亚微, 刘静, 王莉, 郑伟, 董加胜, 张健, 楼琅洪. 缺口取向及温度对第三代单晶高温合金DD33热疲劳行为的影响[J]. 材料研究学报, 2024, 38(2): 111-120.
[3] 曾道平, 安同邦, 郑韶先, 代海洋, 曹志龙, 马成勇. 440 MPa级高强钢焊缝金属的断裂韧性[J]. 材料研究学报, 2024, 38(2): 151-160.
[4] 刘震寰, 李勇翰, 刘洋, 王培, 李殿中. GCr15轴承钢时效过程碳化物的演化行为[J]. 材料研究学报, 2024, 38(2): 130-140.
[5] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[6] 杨仁贤, 马澍成, 蔡欣, 郑雷刚, 胡小强, 李殿中. Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响[J]. 材料研究学报, 2024, 38(1): 23-32.
[7] 秦艳利, 赵光普, 张昊, 倪丁瑞, 肖伯律, 马宗义. 选区激光熔融Al-30Si合金的微观组织和性能[J]. 材料研究学报, 2024, 38(1): 43-50.
[8] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[9] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[10] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[11] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[12] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[13] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[14] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[15] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.