材料研究学报, 2023, 37(9): 706-712 DOI: 10.11901/1005.3093.2022.681

研究论文

脉冲激光沉积技术生长铜材碳基保护膜

陆益敏,1, 马丽芳2, 王海1, 奚琳1, 徐曼曼1, 杨春来1

1.安徽工程大学机械工程学院 芜湖 241000

2.中国人民解放军陆军炮兵防空兵学院 高过载弹药制导控制与信息感知实验室 合肥 230031

Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate

LU Yimin,1, MA Lifang2, WANG Hai1, XI Lin1, XU Manman1, YANG Chunlai1

1.School of Mechanical Engineering of Anhui Polytechnic University, Wuhu 241000, China

2.High Overload Ammunition Guidance and Control and Information Perception Laboratory, PLA Army Academy of Artillery and Air Defense, Hefei 230031, China

通讯作者: 陆益敏,luyimin_zy@163.com,研究方向为功能薄膜及其应用

责任编辑: 吴岩

收稿日期: 2022-12-29   修回日期: 2023-02-02  

基金资助: 安徽省高校科学研究重点项目(2022AH050982)
安徽工程大学引进人才科研启动基金(2022YQQ001)
安徽工程大学校立项目(Xjky2022008)

Corresponding authors: LU Yimin, Tel: 15927643720, E-mail:luyimin_zy@163.com

Received: 2022-12-29   Revised: 2023-02-02  

Fund supported: Scientific Research Project of Universities of Anhui Province(2022AH050982)
Start-up Fund for Introductions of AHPU(2022YQQ001)
Foundation Sciences of AHPU(Xjky2022008)

作者简介 About authors

陆益敏,男,1981年生,博士

摘要

用脉冲激光沉积技术制备三种结构的金属铜材碳基保护膜,分析了失效样品剥离面的微结构。结果表明,在室温条件下生长的碳基复合膜,碳化硅层增强了界面间结合力、避免了类金刚石内应力积累导致的脱落。优化的碳基复合膜牢固地附着在金属铜材上,通过了国军标《光学薄膜通用规范(GJB 2485-95)》中附着力和中度摩擦测试。碳基复合膜使金属铜基材样品表面的纳米硬度比铜基材提高了4倍,增强了铜基材的抗划伤能力。

关键词: 材料表面与界面; 碳基复合膜; 脉冲激光沉积; 附着特性; 失效面诊断

Abstract

Carbon-based coatings, similar to diamond-like film, have lower friction, good corrosion resistance, and other excellent properties, which can be used as protective layers in wide fields. A high adhesive strength of the coating or film on the substrate is the critical requirement for application. However, it is impossible to grow carbon-based layers directly on the most of metals like copper, because they have a high mismatch interface. Based on the former researches and the references, the carbon-based complex coatings with three different structures were designed and grown by pulsed laser deposition. Diamond-like carbon and silicon carbide, the carbon-based materials, were deposited as the functional layer and buffer layer respectively, to make composite coatings. The interface with the weakest bonding force in the designed carbon-based complex coating was found by analyzing the micro-structure of the failure interface in the peeling coating samples. The results of comparative experiments indented that the silicon carbide layer, which played a key role in enhancing the adhesive property of the carbon-based complex coating grown at the room temperature on the metal copper substrate, could increase the bonding force of the interface between the diamond-like carbon functional layer and the metal titanium transition layer, and reduce the invalid problem of the complex coating due to the inner-stress accumulation in the thick diamond-like carbon film. The carbon-based coating of excellent adhesion could successively be prepared on the metal copper substrate, and the products can pass the relative tests regulated in the subsections ‘3.4.1.1 adhesive force’ and ‘3.4.1.3 moderate friction’ in the national military standard of ‘general specifications for optical films (GJB 2485-95)’. Nano-hardness of the coating on the copper substrate increased by 4 times compared with the bare copper, which enhanced the anti-scratch performance.

Keywords: surface and interface in the materials; carbon-based complex coating; pulsed laser deposition; adhesive property; failure interface diagnosis

PDF (5522KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712 DOI:10.11901/1005.3093.2022.681

LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. Chinese Journal of Materials Research, 2023, 37(9): 706-712 DOI:10.11901/1005.3093.2022.681

类金刚石膜(DLC)是一种含有丰富sp3键(金刚石相)的亚稳态非晶碳,硬度高、化学稳定,在机械学和摩擦学等领域有极大的应用价值[1,2]。DLC膜的干摩擦系数是钢的五分之一[3],可减小合金、金属表面的摩擦和降低磨损。但是DLC材料与金属之间有较大的失配界面,不能牢固地附着。多层膜结构可增强DLC复合膜的附着性能,大致可归纳为两大类型:第一,以亲碳的过渡金属(易与碳原子成键)、碳族元素或其碳化物在DLC膜与基材之间形成黏附层/过渡层。这些黏附层/过渡层与DLC膜、基材均能形成一定的化学键、避免两者界面间的结构失配和应力集中[4~6]。基于密度泛函理论的计算结果表明[7],Ti/DLC界面的电荷积累明显强于Fe/DLC界面,说明Ti-C共价键比Fe-C共价键的键能更高,从理论上阐述了Ti层增强DLC膜在Fe基合金上附着性能的机理。实验结果和第一性原理计算结果进一步表明[8, 9],Ti/Ti-DLC界面结合强度优于Ti/DLC界面,Cr/Cr-DLC界面结合强度优于Cr/DLC界面。用PECVD法在不锈钢表面分别沉积的Cr/(CrN/DLC) n /Cr-DLC复合膜和Si/Si-DLC/DLC复合膜,前者的磨损量比单层DLC膜降低了1个数量级[10],后者的临界载荷比没有Si黏附层(110 nm)的结构提高40%以上,且摩擦、硬度等性能明显提高[11];用相同的方法在铝合金基材上生长的Ti/a-C:H:(Si:O)/a-C:H复合膜,其临界载荷远高于无a-C:H:(Si:O)过渡层的结构[12]。用磁控溅射在硅基材上生长的WSx/W/DLC/W多层膜(500~600 nm),其临界载荷显著高于同等厚度的纯DLC膜,纳米硬度和杨氏模量分别达到20 GPa和200 GPa以上[13,14]。用“阴极电弧+磁控溅射+阳极层离子源”复合技术在镀有CrN过渡层的Cr12MoV不锈钢基材表面沉积的厚度约3 μm的DLC膜,其临界载荷和硬度均高于无过渡层的DLC膜[15]。第二,多层交替结构增强DLC复合膜的附着、耐磨、硬度、韧性等性能。用电弧沉积法在镀有Ti黏附层的铝合金表面生长(Ti/Ti-DLC)2交替结构的多层膜,在降低Ti-DLC膜的内应力、增强了附着性能的同时,其耐磨和导热性能也得到了改善[16];在WC基材表明生长的掺杂量高、低交替的多层N-DLC结构附着牢固,并能提高增强膜层的耐磨性和电导性[17]。用磁控溅射生长的(Si/Ag-DLC) n 交替结构的DLC复合膜(1 μm),附着牢固,在溶液环境中摩擦系数可降至0.13[18];(WC/DLC) n 多层交替结构可提高DLC复合膜在不锈钢基材上附着性能、降低磨损率2个数量级[19];(Si/DLC) n 纳米交替结构可提高DLC复合膜在基材表面25%的附着性能[20]。用PECVD法在不锈钢、铝合金及铜合金表面制备高、低掺杂量的Si-DLC交替层,Si-DLC层分别呈现拉应力和压应力,使其内应力相互部分抵消,从而增强DLC复合膜的附着性能[21]

本文用脉冲激光沉积技术(PLD)在室温下制备三种结构的碳基复合膜,比较其附着性能、诊断失效膜层结构样品的微结构以分析出膜层失效原因,并揭示SiC层在增强碳基复合膜附着性能中的作用。

1 实验方法

1.1 碳基复合膜的制备

用PLD技术在室温下制备3种碳基复合膜,结构设计列于表1。使用过渡金属Ti过渡层,以提高两者之间的结合[22, 23]。与结构III相比,结构I的外DLC层为厚层(1.4 μm),结构II的DLC薄层生长在Ti过渡层上,没有用SiC厚层缓冲。

表1   多层碳基复合膜的结构设计

Table 1  Structure design of the multilayer carbon-based complex coatings

Structure IMaterialCu substrate/Ti/SiC/DLC

Thickness / μm

Laserpulses (thousand)

0.3/0.4/1.4

12/30/137

Structure IIMaterialCu substrate/Ti/(DLC/SiC)11/DLC

Thickness / μm

Laser pulses (thousand)

0.3/(0.12/0.03)11/0.12

12/(11.8/2.3)11/11.8

Structure IIIMaterialCu substrate/Ti/SiC/(DLC/SiC)11/DLC

Thickness / μm

Laser pulses (thousand)

0.3/0.4/(0.12/0.03)11/0.12

12/30/(11.8/2.3)11/11.8

新窗口打开| 下载CSV


用乙醚、乙醇混合液擦拭基材以去除表面的污染,然后将其装入真空罐。生长薄膜前,用Ar+离子(Kaufman离子源)轰击基材表面10 min以进一步去除污染和增强表面活性。在真空度为1×10-3 Pa的环境中完成碳基复合膜的制备,无偏压和环境气氛。靶材分别为金属Ti靶(纯度99.8%)、非金属SiC靶(纯度99.99%)和石墨靶(纯度99.99%)。三种靶材的烧蚀面处于同一水平面,使靶材托组公转以控制靶材的位置,即使其受到激光烧蚀而生长不同材料层。为了保证均匀烧蚀和避免不良影响,靶材同时自转和摆动(即在一定角度范围内进行顺-拟时针的公转)。使用波长为248 nm、脉宽为25~30 ns的紫外准分子激光,使用焦距为500 mm的透镜将光束聚焦在靶材表面,激光光束与靶面呈45°。通过真空罐激光入射窗口后聚焦激光的脉冲能量为420 mJ,靶面上的聚焦光斑面积约为5.77 mm2,光斑形状由光斑纸记录,如图1所示。忽略聚焦激光束的传输损耗(小于500 mm的高真空传输路径),估算出靶面上激光脉冲的能量密度约为7.3 J/cm2

图1

图1   靶面上的光斑形状

Fig.1   Facula on the target surface


靶材与基材的距离约为60 mm,激光烧蚀靶材的位置(对应等离子体中轴线)与基材自转轴偏离10 mm,以使基材范围内的镀膜均匀。在PLD过程中激光脉冲数对应生长的膜层厚度具有较好的线性特征,并根据前期实验基础推算出为实现表1中各层厚度所需的激光脉冲数;为了降低激光入射窗口内侧被污染而产生的偏差,每25000~30000个脉冲更换一次干净窗口(不破环真空)。

1.2 性能表征

用XZJ-L2030M金相显微镜观察的样品表面,放大倍率为20~2000倍;用日立S-4800扫描电子显微镜(SEM)观测样品剖面的微结构,加速电压为20 kV、放大倍率为20000倍;用LRS-5拉曼光谱仪测量样品的Raman光谱,激光源为可见光532 nm,测量范围为1000~2000cm-1、分辨率为2 cm-1、积分时间为30 s;用ESCALAB MK型X射线电子能谱仪(XPS)测量样品表面,Al Kα辐射源,测量步长为1 eV(全谱)和0.05 eV(精细谱)。

按照国军标《光学薄膜通用规范(GJB 2485-95)》中“3.4.1.1附着力”和“3.4.1.3中度摩擦”的相关要求测试复合膜的附着性能,测试附着力的要求为:用2 cm宽剥离强度不小于2.74 N/cm胶带纸牢牢粘在膜层表面上,垂直迅速拉起后应无脱膜;测试中度摩擦的要求为:膜层经受压力为4.9 N外裹脱脂布的橡皮摩擦头摩擦50次(25个来回)应无擦痕等损伤。用Nano Indenter G200型纳米压痕仪的XP经典模块测试样品的纳米硬度,最大压入深度为1500 nm。

2 结果和讨论

2.1 多层碳基复合膜的结构III的失效分析

实验结果表明,采用设计结构I很难制备出附着牢固的碳基复合膜。将该类型复合膜从真空罐取出后不久、甚至在制备过程中就破裂(与生长工艺、环境、膜层厚度等条件密切相关),其表面褶皱如图2所示;这种褶皱式的破裂,主要源于DLC膜的巨大内应力[1]

图2

图2   碳基复合膜结构I表面的皱褶

Fig.2   Cracking pattern of carb-based complex coating with structure I


这种类型的碳基复合膜即使在静态环境中能保持完整,也不能承受外力的扰动(如国军标《光学薄膜通用规范(GJB 2485-95)》中“3.4.1.3中度摩擦”的相关测试),因此不能使用。

碳基复合膜(结构II)能通过国军标《光学薄膜通用规范(GJB 2485-95)》中“3.4.1.3中度摩擦”的相关测试,但是未能通过“3.4.1.1附着力”的相关测试,将胶带粘贴、拉起后部分薄膜脱落,剥离面的XPS测试结果如图3所示。

图3

图3   碳基复合膜结构II的剥离面及其XPS诊断结果

Fig.3   XPS survey (a) and Ti2p peak (b) of the exposed surface of carbon-based complex coating with structure II


图3a给出了样品的XPS全谱,可见除了主要由sp2和sp3键引起的C1s峰(284 eV附近)和主要由氧化物共价键引起的O1s峰(530 eV附近),在460 eV附近还出现一个微弱的特征峰,即Ti2p峰,其精细谱如图3b所示。Ti2p峰去背景后克分解为两类子峰,分别由Ti-O键(位于466.5和460.9 eV附近)[24,25]和Ti-C键引起(位于462.3和458.6 eV附近)[26]。XPS分析结果表明,该剥离面应为Ti过渡层与DLC膜的界面。金黄色部分应为TiO2,其中的氧来源于真空制备时残留的氧和Ti层暴露后的氧化;蓝色部分则源于氧空位和氧缺陷[27,28]。XPS谱分析结果表明,高能激光产生的高动能粒子在Ti/DLC界面生成了部分Ti-C共价键,提高了界面结合力。但是在室温下沉积没有多余的能量生成更多的Ti-C共价键[29],因此与其他界面相比该界面最薄弱,在强大的黏贴力作用下最先破裂。

2.2 多层碳基复合膜结构III的微观分析和性能

碳基复合膜(结构III)可通过国军标《光学薄膜通用规范(GJB 2485-95)》中“3.4.1.3中度摩擦”和“3.4.1.1附着力”的相关测试。

DLC材料的本质是非金属C,与金属Cu之间的界面失配程度较高,其易断裂的弱键和过大的剪切力导致键断裂[30],即膜层破裂或脱落。Ti过渡层和SiC黏附层消除了DLC层与金属表面较高的失配。过渡金属Ti适用于大多数金属与非金属材料界面的过渡,在高能激光的激发下Ti原子具备足够的动能向Cu基材浅表面扩散与其生成形成多种Cu-Ti强键[31,32]。SiC层中的Si原子扩散至Ti层浅表面并取代部分Ti和Ti-Si强健[33,34],使其与Ti层牢固结合。DLC和SiC材料具有相似的化学特性和微结构,因此可在交替的界面中相互扩散并生成稳定的能带结构,使界面结合力提高[35,36];SiC薄层夹在DLC层中避免了DLC层内应力积累,使整体的附着性能提高。

2.2.1 微结构分析

碳基复合膜(结构III)表面的XPS测试结果,如图4所示。由于XPS的穿透性弱(一般仅为几个纳米的穿透深度),所测的结果只表征DLC外层的XPS特性。

图4

图4   碳基复合膜结构III表面的XPS测试结果

Fig.4   XPS survey (a) and C1s peak (b) of surface of the carbon-based complex coating with structure III


图4b中的XPS全谱出现了C1s峰和O1s峰,其中的O1s峰源于真空中残留氧元素参与了DLC层的生长和接触空气后的氧化。图5(右)中的C1s精细谱去除背景后可分解为三个主要特征峰[37],分别为284.4 eV附近的sp2C=C键、285.2 eV附近的sp3C-C键和287.2 eV附近的C-O键。比较sp2C=C键和sp3C-C键的特征峰面积,可估算出sp3键与sp2键的含量比例(sp3/sp2)约为2.1。

图5

图5   碳基膜和碳基复合膜的拉曼光谱

Fig.5   Raman spectroscopies of single DLC layer (a), single SiC layer (b), and alternating DLC/SiC film (c)


为了分析DLC层与SiC层的微结构特性,对两种单层膜(基材使用Si,膜层厚度均约300 nm)及(DLC/SiC)5交替层(厚度比例为120 nm∶30 nm)进行拉曼光谱测试,结果如图5所示。

图5a给出了DLC单层膜Raman光谱在1000~1800 cm-1内具有典型碳结构的拉曼特征峰,主要由位于1360 cm-1附近的D峰和1530 cm-1附近的G峰引起[37];去除背景后分解,可得两者的位置、强度和宽度。D峰和G峰均由sp2 C=C键振动引起,其中D峰对应环状sp2碳原子的呼吸振动、G峰由环或链上sp2 C=C键的伸缩振动。两者的强度比,即ID/IG,反映sp3/sp2键的比值;无氢DLC膜的ID/IG越小表明膜层中的无序性越强,则sp3/sp2比值越高。用PLD生长的DLC单层膜其ID/IG约为0.46(均方差0.0168)。

图5b给出的SiC单层膜Raman光谱的特征峰比较窄,只分布在1300~1600 cm-1内,且强度远小于D峰和G峰,对应C-Si键[38]

图5c给出的(DLC/SiC)5交替层Raman光谱的特征峰与DLC单层膜Raman光谱类似,分解后得到上述三个特征峰,可见C-Si键引起的特征峰强度与D峰、G峰之间的差别。可估算出ID/IG约为0.49(均方差0.0094),与单层DLC膜的估算结果一致,表明DLC层与SiC层是相互交替生长的,没有对其微结构产生较大的影响。

2.2.2 纳米硬度

纳米硬度表征样品抵抗外力的机械性能,反映其抗刮擦能力。图6给出了碳基复合膜(结构III)的载荷-压入深度测试结果和推算的纳米硬度。

图6

图6   碳基复合膜结构III的纳米压痕测试结果

Fig.6   Load-depth (a) and hardness-depth curves (b) of carbon-based complex coating


由于使用经典XP模块,图6a给出的载荷-压入深度测试曲线中没有返向的测试曲线。由图6b给出的纳米硬度曲线可见,忽略表面20 nm以上的误差(表面污染、抛光效果较差等原因引起),碳基复合膜(结构III)的纳米硬度极大值约10 GPa,处于压入深度370~400 nm内,此压入深度约为复合膜总厚度(2.5 μm)的15%;而由纳米硬度曲线可估计出,金属Cu基材的硬度低于2 GPa,即镀碳基复合膜金属铜样品的表面硬度比未镀膜时提高4倍以上,表明抗划伤能力提高。

3 结论

用PLD技术可制备不同结构的碳基复合膜, SiC层可提高DLC复合膜的附着性能。SiC厚层能在Ti过渡层与DLC功能层间产生良好的粘附作用。Ti/SiC/DLC界面虽然略复杂于Ti/DLC界面,但是其结合力更大。SiC薄层夹杂缓解了DLC层内部巨大的内应力,可生长出较厚的膜层。化学特性类似的SiC与DLC材料间有很好的结合力,提高了整个膜层的附着性能。

在Cu基材上生长的碳基复合膜具有很强的附着性能,提高了Cu基材的纳米硬度,使其抗外力刮擦能力增强。

参考文献

Xue Q J, Wang L J. Thin Film Materials of Carbon-based Diamond-like Carbon [M]. Beijing: Science Press, 2012

[本文引用: 2]

薛群基, 王立平. 类金刚石碳基薄膜材料 [M]. 北京: 科学出版社, 2012

[本文引用: 2]

Cui L, Sun L L, Guo P, et al.

Effect of deposition time on structure and performance of diamond-like carbon films on PEEK

[J]. Chin. J. Mater. Res., 2022, 36(11): 801

DOI      [本文引用: 1]

Diamond-like carbon (DLC) films with different thickness (11.26~230.93 nm) were prepared on polyether ether ketone (PEEK) via direct current magnetron sputtering in the time ranging from 2 to 40 min. The effect of deposition time on the structure and composition of surface and interface, as well as the surface hydrophobic, the mechanical and optical transmittance properties of composite films PEEK/DLC were systematically studied. Results show that with the increase of deposition time the film thickness will be enhanced linearly with an average deposition rate of 5.71 nm/min. The density of C atoms and the interface interlocking structure gradually increase, while the interface adhesion decreases with time. By fitting peaks of Raman and XPS spectra, it is found that when the time ≤15 min, the ID/IGvalue by data fitting remains at 0.23~0.25 and the ratio of sp2/sp3 is low (0.58~0.74) due to the influence of substrate. When the time >15 min, as the substrate effect becomes weak the ID/IG value has a great increase (to 0.81), and the sp2/sp3 value turns to be high (0.96~1.12). Prolonging the time will lead to the rise of substrate temperature inducing the ascending of sp2/sp3 ratio. While O content at the surface presents a low-flat trend and part of C=O bonds transformed into C-O bonds. The hardness, elastic modulus, the anti-ultraviolet and infrared barrier properties of PEEK/DLC composite films will rise over time, while the surface roughness and hydrophobicity both have a trend from high to low, reaching a maximum surface roughness and water contact angle of 495 nm and 108.29° at 32 min, respectively.

崔 丽, 孙丽丽, 郭 鹏 .

沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响

[J]. 材料研究学报, 2022, 36(11): 801

[本文引用: 1]

Maerten T, Oltra R, Jaoul C, et al.

Investigation of diamond-like carbon coated steel corrosion: enhancing the optical detection of defects by a controlled electrochemical activation

[J]. Surf. Coat. Technol., 2019, 363: 344

DOI      URL     [本文引用: 1]

Zhou Y, Kong C C, Li X W, et al.

Effect of Ti/Al transition layer on properties of Co-doped diamond-like carbon films

[J]. Surf. Technol., 2019, 48(1): 268

[本文引用: 1]

周 永, 孔翠翠, 李晓伟 .

Ti/Al过渡层对共掺杂类金刚石薄膜性能的影响

[J]. 表面技术, 2019, 48(1): 268

[本文引用: 1]

Tillmann W, Dias N F L, Stangier D, et al.

Tribo-mechanical properties and adhesion behavior of DLC coatings sputtered onto 36NiCrMo16 produced by selective laser melting

[J]. Surf. Coat. Technol., 2020, 394: 125748

DOI      URL    

Kabir M S, Zhou Z F, Xie Z H, et al.

Designing multilayer diamond like carbon coatings for improved mechanical properties

[J]. J. Mater. Sci. Technol., 2021, 65: 108

DOI      [本文引用: 1]

New multilayer coatings were produced by incorporating alternating soft and hard DLC layers enabled by varying the bias voltage during deposition process while maintaining a constant hard-to-soft layer thickness ratio. These coatings were deposited onto a Cr/CrCx graded layer by closed field unbalanced magnetron sputtering (CFUBMS). The cross-sectional analysis of the coatings showed that the multilayer coatings possess sharp interfaces between the soft and hard layers with the hard to soft layer thickness ratio (1:1.33) constant in all the coatings. Raman analysis uncovered the increasing sp3 character of the DLC coatings as a result of decreasing ID/IG ratio and increasing full width at half maximum (FWHM) values of the G band peak induced supposedly by an increase in bias voltage during hard layer deposition. Nanoindentation tests showed an increase in hardness of the DLC coatings which can be correlated with the increase in the sp3 content of the coatings as well as decreasing sp2-C cluster size, as calculated from the ID/IG ratio. Furthermore, the coatings exhibited excellent plastic deformation resistance and adhesion strength upon microindentation and scratch testing, respectively. Although further investigations are required to assess coating durability, the multilayer design could offer the DLC coatings with a rare opportunity to combine the high hardness with damage resistance with a constant bilayer thickness and without the need to introduce complex multilayer system.

Wang K L, Zhou H, Zhang K F, et al.

Effects of Ti interlayer on adhesion property of DLC films: a first principle study

[J]. Diam. Relat. Mater., 2021, 111: 108188

DOI      URL     [本文引用: 1]

Shao W, Zhou Y F, Rao L X, et al.

Effect of Cr doping on interface properties of DLC/CrN composite coatings: first-principles study

[J]. Diam. Relat. Mater., 2022, 121: 108721

DOI      URL     [本文引用: 1]

Zhou Y F, Li L L, Hu T S, et al.

Role of TiC nanocrystalline and interface of TiC and amorphous carbon on corrosion mechanism of titanium doped diamond-like carbon films: exploration by experimental and first principle calculation

[J]. Appl. Surf. Sci., 2021, 542: 148740

DOI      URL     [本文引用: 1]

Sui X D, Liu J Y, Zhang S T, et al.

Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance

[J]. Appl. Surf. Sci., 2018, 439: 24

DOI      URL     [本文引用: 1]

Sui X D, Wang X Y, Zhang S T, et al.

Nano-twisted double helix carbon debris improves the wear resistance of ultra-thick diamond-like carbon coatings

[J]. Adv. Mater. Interfaces, 2020, 7(20): 2000857

DOI      URL     [本文引用: 1]

Zhou J.

The interface design and properties of diamond-like carbon films with high adhesion strength deposited on aluminum ally

[D]. Shanghai: Shanghai University, 2020

[本文引用: 1]

周 佳.

铝合金/类金刚石薄膜的强结合界面设计与性能研究

[D]. 上海: 上海大学, 2020

[本文引用: 1]

Yang F E, Gao M B, Zhang J, et al.

Preparation and tribological properties of diamond-like-carbon/CN x multilayer films with symmetrical nitrogen-content gradient

[J]. J. Chin. Ceram. Soc., 2021, 49(10): 2154

[本文引用: 1]

杨芳儿, 高蔓斌, 张 继 .

类金刚石/对称N-梯度CN x 多层膜的制备及摩擦性能

[J]. 硅酸盐学报, 2021, 49(10): 2154

[本文引用: 1]

Zheng X H, Liu T, Yang S Y, et al.

Microstructure and tribological behavior of magnetron sputtered WS x /W/DLC/W multilayer films

[J]. Rare Met. Mater. Eng., 2020, 49(4): 1295

[本文引用: 1]

郑晓华, 刘 涛, 杨烁妍 .

磁控溅射WS x /W/DLC/W 多层膜的微观结构及摩擦学性能

[J]. 稀有金属材料与工程, 2020, 49(4): 1295

[本文引用: 1]

Li F Q, Lin S S, Lin K S, et al.

Preparation of CrN/DLC composite thin film and study on its tribological property

[J]. Electroplat. Finish., 2017, 36(1): 25

[本文引用: 1]

李福球, 林松盛, 林凯生 .

CrN/DLC复合薄膜的制备及其摩擦学性能研究

[J]. 电镀与涂饰, 2017, 36(1): 25

[本文引用: 1]

Cao H S, Ye X, Li H, et al.

Microstructure, mechanical and tribological properties of multilayer Ti-DLC thick films on Al alloys by filtered cathodic vacuum arc technology

[J]. Mater. Des., 2021, 198: 109320

DOI      URL     [本文引用: 1]

Harigai T, Tamekuni K, Iijima Y, et al.

Wear-resistive and electrically conductive nitrogen-containing DLC film consisting of ultra-thin multilayers prepared by using filtered arc deposition

[J]. Jpn. J. Appl. Phys., 2019, 58(SE): SEED05

DOI      URL     [本文引用: 1]

Wu Y X, Liu Y L, Liu Y, et al.

Structure and tribological properties of Si/a-C:H(Ag) multilayer film in stimulated body fluid

[J]. Chin. Phys. B, 2020, 29(11): 116101

DOI      [本文引用: 1]

Si/a-C:H(Ag) multilayer films with different modulation periods are prepared to test their potential applications in human body. The composition, microstructure, mechanical and tribological properties in the simulated body fluid are investigated. The results show the concentration of Ag first decreases and then increases with the modulation period decreasing from 984 nm to 250 nm. Whereas the C content has an opposite variation trend. Notably, the concentration of Ag plays a more important role than the modulation period in the properties of the multilayer film. The a-C:H sublayer of the film with an appropriate Ag concentration (8.97 at.%) (modulation period of 512 nm) maintains the highest sp3/sp2ratio, surface roughness and hardness, and excellent tribological property in the stimulated body fluid. An appropriate number of Ag atoms and size of Ag atom allow the Ag atoms to easily enter into the contact interface for load bearing and lubricating. This work proves that the Ag nanoparticles in the a-C:H sublayer plays a more important role in the tribological properties of the composite-multilayer film in stimulated body fluid condition.

Narguess N, Penkovc O V, Kim D E.

Superior surface protection governed by optimized interface characteristics in WC/DLC multilayer coating

[J]. Surf. Coat. Technol., 2020, 385: 125446

DOI      URL     [本文引用: 1]

Penkov O V, Khadem M, Lee J S, et al.

Highly durable and biocompatible periodical Si/DLC nanocomposite coatings

[J]. Nanoscale, 2018, 10: 4852

DOI      PMID      [本文引用: 1]

Functional nanocomposite coatings comprised of periodically stacked nanolayers of diamond-like carbon (DLC) and amorphous silicon were developed for biomedical applications. The periodical nanocomposite structure provided high surface durability while silicon aided in reducing the residual stress. The structural, mechanical, tribological, and biomedical properties of the Si/DLC coatings deposited by magnetron sputtering were investigated systematically. The effect of the negative substrate bias on the structure and properties of the coatings was also assessed. The coatings demonstrated high durability and high biocompatibility. The bias voltage and bias mode affected both the hardness and residual stress of the Si/DLC coatings. Particularly, application of 60 V negative bias during the DLC layer deposition resulted in the lowest wear rate. FEM simulations showed that the wear resistance of the coatings was dictated by the hardness as well as the adhesion between the coatings and a chromium sub-layer. The periodical alternation of Si and DLC nanolayers led to a significant improvement of MC3T3 cell adhesion compared to the previously published data for Si-DLC composites.

Li A, Chen Q C, Wu G Z, et al.

Effect of the variation of film thickness on the properties of multilayered Si-doped diamond-like carbon films deposited on SUS 304, Al and Cu substrates

[J]. J. Mater. Eng. Perform., 2020, 29(12): 8473

DOI      [本文引用: 1]

Sun A L, Qin W Y, Liu Y, et al.

Effect of titanium plating on cemented carbide substrate tointerfacial transition layer and properties of PcBN composite sheet

[J]. Superhard Mater. Eng., 2021, 33(4): 1

[本文引用: 1]

孙爱玲, 覃伟源, 刘 洋 .

硬质合金基底镀钛对PcBN复合片界面过渡层及性能的影响

[J]. 超硬材料工程, 2021, 33(4): 1

[本文引用: 1]

Lee Y B, Kim B Y, Park H W.

Oxygen-scavenging effects of added Ti layer in the TiN gate of metal-ferroelectric-insulator-semiconductor capacitor with Al-doped HfO2 ferroelectric film

[J]. Adv. Electron. Mater., 2022, 8(11): 2200310

DOI      URL     [本文引用: 1]

Chinh V D, Broggi A, Di Palma L, et al.

XPS spectra analysis of Ti2+, Ti3+ ions and dye photodegradation evaluation of titania-silica mixed oxide nanoparticles

[J]. J. Electron. Mater., 2018, 47: 2215

DOI      URL     [本文引用: 1]

Wei H S, Xie K, Zhang J, et al.

In situ growth of NixCu1-x alloy nanocatalysts on redox-reversible rutile (Nb, Ti)O4 towards high-temperature carbon dioxide electrolysis

[J]. Sci. Rep., 2014, 4: 5156

DOI      [本文引用: 1]

Lei L, Bolzoni L, Yang F.

High thermal conductivity and strong interface bonding of a hot-forged Cu/Ti-coated diamond composite

[J]. Carbon, 2020, 168: 553

DOI      URL     [本文引用: 1]

Hao Z K, Chen Q, Dai W R, et al.

Oxygen-deficient blue TiO2 for ultrastable and fast lithium storage

[J]. Adv. Energy Mater., 2020, 10: 1903107

DOI      URL     [本文引用: 1]

Shim J W, Bae I H, Jeong M H, et al.

Effects of a titanium dioxide thin film for improving the biocompatibility of diamond-like coated coronary stents

[J]. Met. Mater. Int., 2020, 26(10): 1455

DOI      [本文引用: 1]

Li X W, Li L, Zhang D, et al.

Ab initio study of interfacial structure transformation of amorphous carbon catalyzed by Ti, Cr, and W transition layers

[J]. ACS Appl. Mater. Interfaces, 2017, 9(47): 41115

DOI      URL     [本文引用: 1]

Neuville S, Matthews A.

A perspective on the optimisation of hard carbon and related coatings for engineering applications

[J]. Thin Solid Films, 2007, 515(17): 6619

DOI      URL     [本文引用: 1]

Jiang T.

Research and development status and trend of the Ti-Si intermetallics compounds/ceramics matrix composites

[J]. China Ceram. Ind., 2022, 29(5): 45

[本文引用: 1]

江 涛.

Ti-Si金属间化合物/陶瓷复合材料的研究发展现状与发展趋势

[J]. 中国陶瓷工业, 2022, 29(5): 45

[本文引用: 1]

Lin Q J, Yang S M, Wang C Y, et al.

Multifractal analysis for Cu/Ti bilayer thin films

[J]. Surf. Interface Anal., 2013, 45(8): 1223

DOI      URL     [本文引用: 1]

Xue H T, Wei X, Guo W B, et al.

First principle calculation of the binding mechanism between Ti and SiO2

[J]. Trans. China Weld. Inst., 2020, 41(1): 67

[本文引用: 1]

薛海涛, 魏 鑫, 郭卫兵 .

活性元素Ti和SiO2界面结合机制的第一性原理计算

[J]. 焊接学报, 2020, 41(1): 67

DOI      [本文引用: 1]

Ti元素是钎焊SiO<sub>2f</sub>/SiO<sub>2</sub>复合材料重要的活性元素,因此,使用第一性原理计算研究了Ti和SiO<sub>2</sub>的界面结合机制. 分别建立了两种不同的终止面和化学计量比的界面,使用界面分离功、电子行为和界面能研究了界面原子间的结合. 结果表明,在O终止界面中,界面处Ti和O形成很强的离子-共价键,界面分离功最大可达到8.99 J/m<sup>2</sup>. 在Si终止面界面中,Ti和Si形成共价-离子键,界面分离功为2.65 J/m<sup>2</sup>. 在温度为1 173 K时,当Si的活度大于e<sup>&#8722;35</sup>时,富Si界面的界面能更低,界面倾向于形成Ti-Si化合物. 当Si的活度小于e<sup>&#8722;35</sup>时,富O界面在热力学上更加稳定,界面倾向于形成Ti-O化合物. SiO<sub>2</sub>中的Si被Ti置换出后,Si扩散进入钎料,活度升高,与钎料中的Ti反应生成Ti-Si化合物,所以界面结构为SiO<sub>2</sub>/Ti-O化合物/Ti-Si化合物/钎料.

Kuntani Y, Goto D, Maekawa K, et al.

Mechanical shock-induced self-propagating exothermic reaction in Ti/Si multilayer nanofilms for low-power reactive bonding

[J]. Jpn. J. Appl. Phys., 2020, 59(SI): SIIL09

DOI      URL     [本文引用: 1]

Wang J, Liu G C, Wang L D, et al.

Studies of diamond-like carbon(DLC) films deposited on stainless steel substrate with Si/SiC intermediate layers

[J]. Chin. Phys. B, 2008, 17(8): 3108

DOI      URL     [本文引用: 1]

Xu P, Wang Y, Cao X Q, et al.

The tribological properties of DLC/SiC and DLC/Si3N4 under different relative humidity: the transition from abrasive wear to tribo-chemical reaction

[J]. Ceram. Int., 2021, 47: 3901

DOI      URL     [本文引用: 1]

Gao J, Wang Y, Wu H H, et al.

Construction of a sp3/sp2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction

[J]. Angew. Chem. Int. Ed., 2019, 58(42): 15089

DOI      URL     [本文引用: 2]

Nakashima S I, Mitani T, Tomobe M, et al.

Raman characterization of damaged layers of 4H-SiC induced by scratching

[J]. AIP Adv., 2016, 6(1): 015207

[本文引用: 1]

/