Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (3): 217-224    DOI: 10.11901/1005.3093.2019.442
  研究论文 本期目录 | 过刊浏览 |
复合形变超细晶纯钛的动态再结晶模型
马炜杰,杨西荣(),罗雷,刘晓燕,郝凤凤
西安建筑科技大学冶金工程学院 西安 710055
Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process
MA Weijie,YANG Xirong(),LUO Lei,LIU Xiaoyan,HAO Fengfeng
School of Metallurgy and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
引用本文:

马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
Weijie MA, Xirong YANG, Lei LUO, Xiaoyan LIU, Fengfeng HAO. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. Chinese Journal of Materials Research, 2020, 34(3): 217-224.

全文: PDF(2738 KB)   HTML
摘要: 

采用室温等径弯曲通道变形(ECAP)+旋锻复合加工工艺制备超细晶纯钛,用GLEEBLE 3800热模拟试验机对其进行热压缩实验。研究了复合形变超细晶纯钛在温度为200、300、350、400和450℃,应变速率为0.01、0.1和1 s-1条件下的变形行为。结果表明:实验中真应力-应变曲线的动态再结晶特征显著,出现了明显的单峰值应力。根据复合形变超细晶纯钛的峰值应力值建立的Arrhenius本构方程能预测峰值应力,平均相对误差仅为4.44%;大塑性变形试样在热压缩前进行的保温处理,增大了发生动态再结晶的临界应变值,其材料常数为0.8329;材料变形中的动态再结晶行为发生在应变大于0.1而小于0.4的阶段,应变大于0.4时发生二次硬化。

关键词 材料合成与加工工艺本构模型热压缩超细晶纯钛    
Abstract

The combined deformation processing technology of equal channel angular pressing (ECAP) and rotary swaging at indoor temperatures was applied to industrial pure titanium. Then the deformation behavior of the acquired ultrafine grained pure titanium by applied strain rates of 0.01, 0.1 and 1 s-1 at 200, 300, 350, 400 and 450°C was investigated via thermal compression test with the Gleeble 3800 thermal simulator. The results show that the dynamic recrystallization characteristics of the experimental true stress-strain curve are significant, and the apparent single peak stress appears. According to the Arrhenius constitutive equation based on the peak stress value of the acquired ultrafine grained pure titanium, the peak stress can effectively be predicted with an average relative error of only 4.44%. Since the large plastic deformed sample was subjected to pre-heat insulation treatment before thermal compression, the critical strain for dynamic recrystallization was increased, of which the material constant is 0.8329. The dynamic recrystallization behavior during deformation mainly occurs in the stage where the strain is greater than 0.1 and less than 0.4. Whereas the strain is greater than 0.4, the material undergoes secondary hardening.

Key wordssynthesizing and processing technics for materials    constitutive model    hot compression    ultrafine grain pure titanium
收稿日期: 2019-09-11     
ZTFLH:  TG146.2+3  
基金资助:国家自然科学基金(51474170)
作者简介: 马炜杰,男,1992年生,硕士生
图1  粗晶纯钛和超细晶纯钛的微观组织
图2  超细晶纯钛的压缩变形真应力-应变曲线
图3  不同条件下压缩试样的极图
图4  在300℃、0.01 s-1条件下压缩后超细晶纯钛的TEM像
图5  超细晶纯钛的流动应力与热变形参数的关系
n1βαn

Q

/kJ·mol-1

ln An2
33.790.077350.00228925.33210.5636.6825.32
表1  Arrhenius本构模型的材料常数
图6  实验值与计算值的散点图
图7  加工硬化率与流动应力关系的示意图
图8  在300℃、0.01 s-1条件下的加工硬化率与流动应力曲线图
图9  在300℃、0.01 s-1条件下的dθ/dσ与真应力关系曲线
图10  临界应变与峰值应变的线性拟合图
图11  动态再结晶体积分数曲线
图12  动态再结晶材料常数线性拟合求解
[1] Wang X G, Liu J L, Zhao X C, et al. Micro extrusion of ultrafine grained titanium prepared by ECAP [J]. J. Wuhan Univ. Technol., 2017, 32: 437
[2] Shan D B, Xu J, Wang C J, et al. The state of the art in plastic micro-forming [J]. Mater. China, 2016, 35: 251
[2] 单德彬, 徐杰, 王春举等. 塑性微成形技术研究进展 [J]. 中国材料进展, 2016, 35: 251
[3] Xu J, Li J W, Zhu X C, et al. Microstructural evolution at micro/meso-scale in an ultrafine-grained pure aluminum processed by equal-channel angular pressing with subsequent annealing treatment [J]. Materials, 2015, 8: 7447
[4] Zhang X H, Wang H Y, Scattergood R O, et al. Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn [J]. Acta Mater., 2002, 50: 4823
[5] Sajadifar S V, Yapici G G, Demler E, et al. Cyclic deformation response of ultra-fine grained titanium at elevated temperatures [J]. Int. J. Fatig., 2019, 122: 228
[6] Yang X R, Chen X L, Luo L, et al. Creep behavior of ultra-fine grained CP Ti processed by combined deformation at room temperature [J]. Rare Met. Mater. Eng., 2018, 47: 2126
[6] 杨西荣, 陈小龙, 罗雷等. 复合加工制备的超细晶工业纯钛室温蠕变行为 [J]. 稀有金属材料与工程, 2018, 47: 2126
[7] Liu X Y, Zhao X C, Yang X R, et al. Hot compression deformation behavior of as-ECAPed CP-Ti at room temperature with 120° die [J]. Rare Met. Mater. Eng., 2012, 41: 667
[7] 刘晓燕, 赵西成, 杨西荣等. 120°模具室温ECAP制备工业纯钛的热压缩变形行为 [J]. 稀有金属材料与工程, 2012, 41: 667
[8] Fu H H, Benson D J, Meyers M A. Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta Mater., 2001, 49: 2567
[9] Ning J Q, Nguyen V, Liang S Y. Analytical modeling of machining forces of ultra-fine-grained titanium [J]. Int. J. Ad. Manuf. Technol., 2019, 101: 627
[10] Liu X H, Zou W J, Fu H D, et al. Cu/Ti bimetal composite pi-pe fabricated by heating rotary swaging forming and its interface, microstructure and properties [J]. Chin. J. Rare Met., 2017, 21: 364
[10] 刘新华, 邹文江, 付华栋等. 铜/钛双金属复合管的热旋锻制备及其界面组织性能 [J]. 稀有金属, 2017, 21: 364
[11] Mao W M, Zhao X B. Metal Recrystallization and Grain Gr-owth [M]. Beijing: Metallurgical Industry Press, 1994: 29
[11] 毛卫民, 赵新兵. 金属的再结晶与晶粒长大 [M]. 北京: 冶金工业出版社, 1994: 29
[12] Zhang L, Meng Z Q, Shi M J, et al. Dynamic recrystallization behavior of 65Mn steel [J]. Heat Treat. Met., 2018, 43(5): 39
[12] 刘 乐, 孟子祺, 石妙杰等. 65Mn钢的动态再结晶行为 [J]. 金属热处理, 2018, 43(5): 39
[13] Tian S W, Jiang H T, Guo W Q, et al. Hot deformation and dynamic recrystallization behavior of TiAl-based alloy [J]. Intermetallics, 2019, 112: 106521
[14] Souza P M, Hodgson P D, Rolfe B, et al. Effect of initial microstructure and beta phase evolution on dynamic recrystallization behaviour of Ti6Al4V alloy - An EBSD based investigation [J]. J. Alloys Compd., 2019, 793: 467
[15] Wan Z P, Sun Y, Hu L X, et al. Modeling of the critical conditions on dynamic recrystallization for tial-based alloy [J]. Rare Met. Mater. Eng., 2018, 47: 835
[15] 万志鹏, 孙 宇, 胡连喜等. TiAl基合金动态再结晶临界模型建立 [J]. 稀有金属材料与工程, 2018, 47: 835
[16] Ouyang D L, Cui X, Lu S Q, et al. Hot compressive deformation and dynamic recrystallization of as-forged Ti-alloy TB6 during β process [J]. Chin. J. Mater. Res., 2019, 33: 218
[16] 欧阳德来, 崔 霞, 鲁世强等. 锻态TB6钛合金β相区压缩变形行为和动态再结晶 [J]. 材料研究学报, 2019, 33: 218
[17] Liu L J, Lv M, Wu W G. Recrystallization softening effect in the improved constitutive equation for TI-6AL-4V alloy [J]. Rare Met. Mater. Eng., 2014, 43: 1367
[17] 刘丽娟, 吕 明, 武文革. 再结晶软化效应对Ti-6Al-4V修正本构的影响 [J]. 稀有金属材料与工程, 2014, 43: 1367
[18] Lin Y C, Huang J, He D G, et al. Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression [J]. J. Alloys Compd., 2019, 795: 471
[19] Xie C. Compression deformation behaviors of CP-Ti processed by ECAP at room temperature using a 90° die [D]. Xi'an: Xi'an University of Architecture and Technology, 2013.
[19] 解晨. 90°模具室温ECAP变形工业纯钛的热压缩行为研究 [D]. 西安: 西安建筑科技大学, 2013
[20] Beausir B, Tóth L S, Neale K W. Ideal orientations and persistence characteristics of hexagonal close packed crystals in simple shear [J]. Acta Mater., 2007, 55: 2695
[21] Qiang M. Effects of initial microstructure on microstructure and properties of pure Ti processed by ECAP [D]. Xi'an: Xi'an University of Architecture and Technology, 2018
[21] 强 萌. 原始组织对ECAP变形纯钛组织性能影响研究 [D]. 西安: 西安建筑科技大学, 2018
[22] Kotkunde N, Deole A D, Gupta A K, et al. Comparative study of constitutive modeling for Ti-6Al-4V alloy at low strain rates and elevated temperatures [J]. Mater. Des., 2014, 55: 999
[23] Kim M H, Lee J W, Kim S W, et al. Evaluation of the hot workability of commercially pure Ti using hot torsion tests [J]. J. Nanosci. Nanotechnol., 2019, 19: 1772
[24] Liu J, Cui Z S, Ruan L Q. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B [J]. Mater. Sci. Eng., 2011, 529A: 300
[25] Zhang P, Yi C, Chen G, et al. Constitutive model based on dynamic recrystallization behavior during thermal deformation of a nickel-based superalloy [J]. Metals, 2016, 6: 161
[1] 周海涛, 侯湘武, 汪彦博, 肖旅, 袁勇, 孙京丽. Nb-TiAl合金的高温变形行为及其板材的性能[J]. 材料研究学报, 2022, 36(6): 471-480.
[2] 闫福照, 李静, 熊良银, 刘实. FeCr-ODS铁素体合金的氧化+粉锻工艺制备及其微观结构[J]. 材料研究学报, 2022, 36(6): 461-470.
[3] 刘超, 王鑫, 门月, 张浩宇, 张思倩, 周舸, 陈立佳, 刘海建. Ti-6Al-4V合金热压缩过程中的动态再结晶[J]. 材料研究学报, 2021, 35(8): 583-590.
[4] 杨靖丞, 王立忠, 钟志平, 郑英俊. 基于动态再结晶37CrS4特种钢的流变应力预测模型[J]. 材料研究学报, 2021, 35(4): 284-292.
[5] 苏楠, 陈明和, 谢兰生, 罗峰, 史文祥. TC2钛合金的动态力学特征及其本构模型[J]. 材料研究学报, 2021, 35(3): 201-208.
[6] 王永鹏, 贾治豪, 刘梦竹. 二维CdO纳米棒的制备及其用于葡萄糖传感器的可行性[J]. 材料研究学报, 2021, 35(1): 53-58.
[7] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[8] 王伟, 宫鹏辉, 张浩泽, 史亚鸣, 王萌, 张晓锋, 王快社. 电子束冷床熔炼TC4钛合金的热变形行为[J]. 材料研究学报, 2020, 34(9): 665-673.
[9] 蔡国栋, 程西云, 王典. FDM3D打印316L不锈钢试样和La对析出物形貌和分布的影响[J]. 材料研究学报, 2020, 34(8): 635-640.
[10] 王敬忠, 丁凯伦, 杨西荣, 刘晓燕. Ti-62A合金动态软化速率异常的热力学解释及其应变补偿本构方程[J]. 材料研究学报, 2020, 34(6): 401-409.
[11] 刘晓燕, 柳奎君, 杨西荣, 王敬忠, 罗雷. 超细晶纯钛疲劳裂纹的扩展行为[J]. 材料研究学报, 2020, 34(6): 417-424.
[12] 谢礼兰, 杨冬升, 凌静. 高容量锂电池负极材料TiNb2O7的合成及其机理[J]. 材料研究学报, 2020, 34(5): 385-391.
[13] 姜巨福, 王迎, 肖冠菲, 邓腾, 刘英泽, 张颖. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响[J]. 材料研究学报, 2020, 34(12): 881-891.
[14] 杨占鑫, 吴琼, 任奕桥, 屈凯凯, 张哲豪, 仲为礼, 范广宁, 齐国超. 宏量制备层状Ti3C2及其超级电容的性能[J]. 材料研究学报, 2020, 34(11): 861-867.
[15] 秦斌,王群,王富孟,靳利娥,解小玲,曹青. 高电导率低热膨胀系数针状焦的制备[J]. 材料研究学报, 2019, 33(1): 53-58.