|
|
复合形变超细晶纯钛的动态再结晶模型 |
马炜杰,杨西荣( ),罗雷,刘晓燕,郝凤凤 |
西安建筑科技大学冶金工程学院 西安 710055 |
|
Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process |
MA Weijie,YANG Xirong( ),LUO Lei,LIU Xiaoyan,HAO Fengfeng |
School of Metallurgy and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China |
引用本文:
马炜杰,杨西荣,罗雷,刘晓燕,郝凤凤. 复合形变超细晶纯钛的动态再结晶模型[J]. 材料研究学报, 2020, 34(3): 217-224.
Weijie MA,
Xirong YANG,
Lei LUO,
Xiaoyan LIU,
Fengfeng HAO.
Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. Chinese Journal of Materials Research, 2020, 34(3): 217-224.
[1] | Wang X G, Liu J L, Zhao X C, et al. Micro extrusion of ultrafine grained titanium prepared by ECAP [J]. J. Wuhan Univ. Technol., 2017, 32: 437 | [2] | Shan D B, Xu J, Wang C J, et al. The state of the art in plastic micro-forming [J]. Mater. China, 2016, 35: 251 | [2] | 单德彬, 徐杰, 王春举等. 塑性微成形技术研究进展 [J]. 中国材料进展, 2016, 35: 251 | [3] | Xu J, Li J W, Zhu X C, et al. Microstructural evolution at micro/meso-scale in an ultrafine-grained pure aluminum processed by equal-channel angular pressing with subsequent annealing treatment [J]. Materials, 2015, 8: 7447 | [4] | Zhang X H, Wang H Y, Scattergood R O, et al. Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn [J]. Acta Mater., 2002, 50: 4823 | [5] | Sajadifar S V, Yapici G G, Demler E, et al. Cyclic deformation response of ultra-fine grained titanium at elevated temperatures [J]. Int. J. Fatig., 2019, 122: 228 | [6] | Yang X R, Chen X L, Luo L, et al. Creep behavior of ultra-fine grained CP Ti processed by combined deformation at room temperature [J]. Rare Met. Mater. Eng., 2018, 47: 2126 | [6] | 杨西荣, 陈小龙, 罗雷等. 复合加工制备的超细晶工业纯钛室温蠕变行为 [J]. 稀有金属材料与工程, 2018, 47: 2126 | [7] | Liu X Y, Zhao X C, Yang X R, et al. Hot compression deformation behavior of as-ECAPed CP-Ti at room temperature with 120° die [J]. Rare Met. Mater. Eng., 2012, 41: 667 | [7] | 刘晓燕, 赵西成, 杨西荣等. 120°模具室温ECAP制备工业纯钛的热压缩变形行为 [J]. 稀有金属材料与工程, 2012, 41: 667 | [8] | Fu H H, Benson D J, Meyers M A. Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta Mater., 2001, 49: 2567 | [9] | Ning J Q, Nguyen V, Liang S Y. Analytical modeling of machining forces of ultra-fine-grained titanium [J]. Int. J. Ad. Manuf. Technol., 2019, 101: 627 | [10] | Liu X H, Zou W J, Fu H D, et al. Cu/Ti bimetal composite pi-pe fabricated by heating rotary swaging forming and its interface, microstructure and properties [J]. Chin. J. Rare Met., 2017, 21: 364 | [10] | 刘新华, 邹文江, 付华栋等. 铜/钛双金属复合管的热旋锻制备及其界面组织性能 [J]. 稀有金属, 2017, 21: 364 | [11] | Mao W M, Zhao X B. Metal Recrystallization and Grain Gr-owth [M]. Beijing: Metallurgical Industry Press, 1994: 29 | [11] | 毛卫民, 赵新兵. 金属的再结晶与晶粒长大 [M]. 北京: 冶金工业出版社, 1994: 29 | [12] | Zhang L, Meng Z Q, Shi M J, et al. Dynamic recrystallization behavior of 65Mn steel [J]. Heat Treat. Met., 2018, 43(5): 39 | [12] | 刘 乐, 孟子祺, 石妙杰等. 65Mn钢的动态再结晶行为 [J]. 金属热处理, 2018, 43(5): 39 | [13] | Tian S W, Jiang H T, Guo W Q, et al. Hot deformation and dynamic recrystallization behavior of TiAl-based alloy [J]. Intermetallics, 2019, 112: 106521 | [14] | Souza P M, Hodgson P D, Rolfe B, et al. Effect of initial microstructure and beta phase evolution on dynamic recrystallization behaviour of Ti6Al4V alloy - An EBSD based investigation [J]. J. Alloys Compd., 2019, 793: 467 | [15] | Wan Z P, Sun Y, Hu L X, et al. Modeling of the critical conditions on dynamic recrystallization for tial-based alloy [J]. Rare Met. Mater. Eng., 2018, 47: 835 | [15] | 万志鹏, 孙 宇, 胡连喜等. TiAl基合金动态再结晶临界模型建立 [J]. 稀有金属材料与工程, 2018, 47: 835 | [16] | Ouyang D L, Cui X, Lu S Q, et al. Hot compressive deformation and dynamic recrystallization of as-forged Ti-alloy TB6 during β process [J]. Chin. J. Mater. Res., 2019, 33: 218 | [16] | 欧阳德来, 崔 霞, 鲁世强等. 锻态TB6钛合金β相区压缩变形行为和动态再结晶 [J]. 材料研究学报, 2019, 33: 218 | [17] | Liu L J, Lv M, Wu W G. Recrystallization softening effect in the improved constitutive equation for TI-6AL-4V alloy [J]. Rare Met. Mater. Eng., 2014, 43: 1367 | [17] | 刘丽娟, 吕 明, 武文革. 再结晶软化效应对Ti-6Al-4V修正本构的影响 [J]. 稀有金属材料与工程, 2014, 43: 1367 | [18] | Lin Y C, Huang J, He D G, et al. Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression [J]. J. Alloys Compd., 2019, 795: 471 | [19] | Xie C. Compression deformation behaviors of CP-Ti processed by ECAP at room temperature using a 90° die [D]. Xi'an: Xi'an University of Architecture and Technology, 2013. | [19] | 解晨. 90°模具室温ECAP变形工业纯钛的热压缩行为研究 [D]. 西安: 西安建筑科技大学, 2013 | [20] | Beausir B, Tóth L S, Neale K W. Ideal orientations and persistence characteristics of hexagonal close packed crystals in simple shear [J]. Acta Mater., 2007, 55: 2695 | [21] | Qiang M. Effects of initial microstructure on microstructure and properties of pure Ti processed by ECAP [D]. Xi'an: Xi'an University of Architecture and Technology, 2018 | [21] | 强 萌. 原始组织对ECAP变形纯钛组织性能影响研究 [D]. 西安: 西安建筑科技大学, 2018 | [22] | Kotkunde N, Deole A D, Gupta A K, et al. Comparative study of constitutive modeling for Ti-6Al-4V alloy at low strain rates and elevated temperatures [J]. Mater. Des., 2014, 55: 999 | [23] | Kim M H, Lee J W, Kim S W, et al. Evaluation of the hot workability of commercially pure Ti using hot torsion tests [J]. J. Nanosci. Nanotechnol., 2019, 19: 1772 | [24] | Liu J, Cui Z S, Ruan L Q. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B [J]. Mater. Sci. Eng., 2011, 529A: 300 | [25] | Zhang P, Yi C, Chen G, et al. Constitutive model based on dynamic recrystallization behavior during thermal deformation of a nickel-based superalloy [J]. Metals, 2016, 6: 161 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|