Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (9): 703-710    DOI: 10.11901/1005.3093.2016.178
  研究论文 本期目录 | 过刊浏览 |
开孔泡沫铝-环氧树脂复合夹芯板局压性能试验研究*
辛亚军,肖博,程树良,李慧剑
燕山大学 河北省重型装备与大型结构力学可靠性重点实验室 秦皇岛 066004
Performance by Localized Indentation Test of Composite Sandwich of Open-cell Aluminum Foam and Epoxy Resin
Yajun XIN,Bo XIAO,Shuliang CHENG,Huijian LI
Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Provice, Yanshan University, Qinhuangdao 066004, China
引用本文:

辛亚军,肖博,程树良,李慧剑. 开孔泡沫铝-环氧树脂复合夹芯板局压性能试验研究*[J]. 材料研究学报, 2016, 30(9): 703-710.
Yajun XIN, Bo XIAO, Shuliang CHENG, Huijian LI. Performance by Localized Indentation Test of Composite Sandwich of Open-cell Aluminum Foam and Epoxy Resin[J]. Chinese Journal of Materials Research, 2016, 30(9): 703-710.

全文: PDF(6061 KB)   HTML
摘要: 

对一种开孔泡沫铝-环氧树脂复合夹芯板进行了准静态局部压缩试验, 研究了其破坏形态和典型荷载-位移曲线, 并与传统蒙皮夹芯板进行了对比, 分析了不同复合层厚度、不同压头类型和不同边界条件对局压刚度、极限承载力及吸能量等主要性能参数的影响。结果表明开孔泡沫铝/环氧树脂复合夹芯板在局部压力作用下表现了较好的整体性、稳定性和吸能性能, 其典型荷载-位移曲线经历四个阶段: 弹性阶段、局部损伤阶段、整体损伤阶段和冲切破坏阶段。泡沫铝-环氧树脂复合层能显著提高夹芯板力学性能, 且随厚度增加有增强趋势, 球柱形压头作用下的破坏形态和力学性能与圆柱形压头和方形压头有明显区别, 简支边界条件下力学性能比固支时明显降低。与传统夹芯板相比, 这种夹芯板的刚度、强度、吸能量和整体性都有较大提高。

关键词 复合材料夹芯板泡沫铝-环氧树脂复合夹芯板局压    
Abstract

By carrying out quasi-static localized indentation tests, failure modes and typical load-displacement curves of composite sandwich of open-cell aluminum foam and epoxy resin were studied. It was also compared with the traditional sandwich panel. The influence of composite layer thickness, indenter type and boundary condition on the localized indentation stiffness, ultimate bearing capacity and energy absorption capacity were analyzed. The results indicate that this kind of composite sandwich panel has good integrality, stability and energy absorption capacity in the condition of indentation. Load-displacement curves have gone through four phases: elastic phase, local damage phase, overall damage phase and punching failure phase. Mechanical properties of sandwich panel have been obviously improved by the over lapped layers of aluminum foam and epoxy resin. Also, there exists an increasing tendency of the mechanical property of the panel with the increase of composite layer thickness. Failure modes and mechanical properties of specimens with spherical indenter are very different from cylindrical indenter and square indenter. Mechanical properties of specimens, which were simply supported are poorer than specimens, which were fully fixed. The stiffness, strength, energy absorption capacity and integrality of composite sandwich panel are superior to those of the traditional sandwich panel.

Key wordscomposite    sandwich panel    aluminum foam and epoxy resin    composite sandwich panel    indentation
收稿日期: 2016-04-05     
基金资助:* 河北省自然科学基金E2013203183和住建部科科技计划2013-K2-2资助项目
图1  试件结构示意图
图2  试件样本
Group. Composite layer thickness δ /mm Boundary
conditions
Indenter
shapes
G1-1/2/3 0 Fully fixed Cylindrical
G2-1/2/3 2.5 Fully fixed Cylindrical
G3-1/2/3 4 Fully fixed Cylindrical
G4-1/2/3 2.5 Fully fixed Square
G5-1/2/3 2.5 Fully fixed Spherical
G6-1/2 2.5 Simply supported Cylindrical
G7-1 0.5 mm aluminum Fully fixed Cylindrical
表1  试件的编号和参数
图3  试件破坏过程和破坏形态
图4  荷载-位移曲线
图5  局压各阶段试件横截面图
图6  不同复合层厚度破坏形态对比图
图7  第1/2/3组荷载-位移曲线比较
图8  第1/2/3组局压刚度、极限承载力和吸能量比较
图9  第2/4/5组荷载-位移曲线比较
图10  第2/4/5组局压刚度、极限承载力和吸能量比较
图11  第2/6组荷载-位移曲线比较
图12  第2/6组局压刚度、极限承载力和吸能量比较
图13  传统夹芯板局压破坏过程和破坏形态
图14  第2/7组荷载-位移曲线比较
图15  第2/7组局压刚度、极限承载力和吸能量比较
[1] J. Tbeals, M. S. Thompson, Density gradient effection aluminum foam compressive behavior, Journal of Materials Science, 32(13), 3593(1997)
[2] WANG Bin, HE Deping, SHU Guangji, Compressive property and energy-absorption of foamed AI alloy, Acta Metallurgica Sinica, 36(10), 1037(2000)
[2] (王斌, 何德坪, 舒光冀, 泡沫AI合金的压缩性能及其能量吸收, 金属学报, 36(10), 1037(2000))
[3] M. A. Yahaya, D. Ruan, Response of aluminum honeycomb sandwich panels subjected to foam projectile impact-An experimental study, International Journal of Impact Engineering, 75(1), 100(2015)
[4] J. Banhart, Manufacture characterization and application of cellular metals and metal foams, Progress in Materials Science, 46(6), 559(2001)
[5] YU Yinghua, LI Zhichao, LIU Jingfu, Research present situation and prospect for application on porous foam aluminum, Journal of Liaoning Technical University, 22(2), 259(2003)
[5] (于英华, 李智超, 刘敬福, 多孔泡沫铝性能研究现状及应用前景展望, 辽宁工程技术大学学报, 22(2), 259(2003))
[6] ZHAO Wanxiang, ZHAO Naiqin, GUO Xinquan, Study progress for new type functional materials of foam aluminum, Heat Treatment of Metals, 29(6), 7(2004)
[6] (赵万祥, 赵乃勤, 郭新权, 新型功能材料泡沫铝的研究进展, 金属热处理, 29(6), 7(2004))
[7] H. W. Seeliger, Aluminum foam sandwich (AFS) ready for market introduction, Advanced Engineering Materials, 6(6), 448(2004)
[8] S. Dirk, S. Hans-Wolfgang, Aluminum foam sandwich structure for space application, Acta Astronautca, 61(1), 326(2007)
[9] JING Lin, WANG Zhihua, ZHAO Longmao, Advances in studies of the mechanical performance of cellular metals and related sandwich structures, Mechanics in Engineering, 37(3), 1(2015)
[9] (敬霖, 王志华, 赵隆茂, 多孔金属及其夹芯结构力学性能的研究进展, 力学与实践, 37(3), 1(2015))
[10] S. R. Reid, T. Y Reddy, Experimental investigation of interia effects in one-dimensional metal ring systems, International Journal of Impact Energy, 1(1), 277(1983)
[11] Moon Sik HAN, Jae Ung CHO, Impact damage behavior of sandwich composite with aluminum foam core, Transactions of Nonferrous Metals Society of China, 24(S1), s42(2014)
[12] Q. M. Li, H. Meng, Attenuation or enhancement-a one-dimensional analysis on shock transmission in the solid phase of a cellular material, International Journal of Impact Engineering, 27(10), 1049(2002)
[13] JING Lin, WANG Zhihua, SONG Yanze, ZHAO Longmao, Dynamic response of a cellar metal sandwich panel subjected to metal foam projectile impact, Journal of Vibration and Shock, 30(12), 22(2011)
[13] (敬霖, 王志华, 宋延泽, 赵隆茂, 泡沫金属子弹撞击载荷下多孔金属夹芯板的动态响应, 振动与冲击, 30(12), 22(2011))
[14] PANG Baojun, ZHENG Wei, CHEN Yong, Dynamic impact behavior of aluminum foam with a taylor impact test and a theoretical analysis, Journal of Vibration and Shock, 32(12), 154(2013)
[14] (庞宝君, 郑伟, 陈勇, 基于Taylor实验及理论分析的泡沫铝动态特性研究, 振动与冲击, 32(12), 154(2013))
[15] WANG Qingchun, FAN Zijie, GUI Liangjin, WANG Zhenghong, FU Zilai, Energy absorption behavior of aluminum foam under medium strain rate, Chinese Journal of Materials Research, 19(6), 601(2005)
[15] (王青春, 范子杰, 桂良进, 王政红, 付自来, 中等应变率下泡沫铝的吸能特性, 材料研究学报, 19(6), 601(2005))
[16] SHANG Jintang, HE Deping, Deformation of sandwich beams with Al foam cores in three-point bending, Chinese Journal of Materials Research, 17(1), 31(2003)
[16] (尚金堂, 何德坪, 泡沫铝层合梁的三点弯曲变形, 材料研究学报, 17(1), 31(2003))
[17] LIU Xinrang, TIAN Xiaogeng, LU Tianjian, LIANG Bin, WANG Yiqing, Blast-resistance behaviors of sandwich-walled hollow cylinders with aluminum foam cores, Journal of Vibration and Shock, 31(23), 166(2012)
[17] (刘新让, 田晓耕, 卢天健, 梁斌, 王伊卿, 泡沫铝夹心圆筒抗爆性能研究, 振动与冲击, 31(23), 166(2012))
[18] G. Reyes Villanueva, W. J. Cantwell, Low velocity impact response of novel fiber-reinforced aluminum foam sandwich structures, Journal of Materials Science Letters, 22(6), 417(2003)
[19] K. Mohan, H. P. Seow, I. Sridhar, T. H, Yip, Effects of face sheet material in the indentation response of metallic foams, Journal of Material Science, 42(11), 3714(2007)
[20] O. B. Olurin, F. A. Fleck, M. F. Ashby, Indentation resistance of an lauminium foam, Scripta Materialia, 43(11), 983(2000)
[21] D. Ruan, G. X. Lu, Quasi-static indentation tests on aluminum foam sandwich panels, Composite Structures, 92(9), 2039(2010)
[22] LI Zhibin, LU Fangyun, Tests for indentation and perforation of sandwich panels with aluminium foam core, Journal of Vibration and Shock, 34(4), 1(2015)
[22] (李志斌, 卢芳云, 泡沫铝夹芯板压入和侵彻性能的实验研究, 振动与冲击, 34(4), 1(2015))
[23] ZHANG Min, CHEN Changjun, YAO Guangchun, Manufacturing technology of AI foam sandwich, Materials Review, 22(1), 85(2008)
[23] (张敏, 陈长军, 姚广春, 泡沫铝夹芯板的制备技术, 材料导报, 22(1), 85(2008))
[24] HE Chenchong, LU Wei, WANG Gang, YAN Biao, Preparation methods of aluminum foams and aluminum foam sandwichs, Metallic Functional Materials, 19(5), 10(2012
[24] )(何晨冲, 陆伟, 王岗, 严彪, 泡沫铝及泡沫铝夹心板的制备方法, 金属功能材料, 19(5), 10(2012))
[25] XIN Yajun, LI Huijian, ZHAO Xuya, CHENG Shuliang, YU Wei, Compression and bending tests on integrated composite sandwich panel of epoxy resin/aluminum foam, Journal of Experimental Mechanics, 30(4), 421(2015)
[25] (辛亚军, 李慧剑, 赵旭亚, 程树良, 余为, 环氧树脂/泡沫铝一体型复合夹层板压缩及弯曲试验研究, 实验力学, 30(4), 421(2015))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.