Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (5): 379-387    DOI: 10.11901/1005.3093.2015.570
  本期目录 | 过刊浏览 |
聚氨酯涂层对复合材料层合板抗反复低速冲击性能的影响*
岳海亮1, 张国利1(), 王壮志2, 郭瑞彦1
1. 天津工业大学复合材料研究所 教育部先进纺织复合材料共建重点实验室 天津 300387
2. 威海光威复合材料股份有限公司 威海 264200
Evaluation of Ressistance to Repeated Low-Velocity Impact of Composite Laminates with Polyurethane Coating
YUE Hailiang1, ZHANG Guoli1,**(), WANG Zhuangzhi2, GUO Ruiyan1
1. Key Laboratory of Advanced Textile Composites, Tianjin and Ministry of Education, Tianjin Polytechnic University, Tianjin, 300387, China
2. Weihai Guangwei Composites Material Co., Ltd, Weihai, 264200, China
引用本文:

岳海亮, 张国利, 王壮志, 郭瑞彦. 聚氨酯涂层对复合材料层合板抗反复低速冲击性能的影响*[J]. 材料研究学报, 2016, 30(5): 379-387.
Hailiang YUE, Guoli ZHANG, Zhuangzhi WANG, Ruiyan GUO. Evaluation of Ressistance to Repeated Low-Velocity Impact of Composite Laminates with Polyurethane Coating[J]. Chinese Journal of Materials Research, 2016, 30(5): 379-387.

全文: PDF(3378 KB)   HTML
摘要: 

本文采用模压成型工艺制备出三种不同厚度的复合材料层合板, 对其表面进行喷砂粗糙处理后喷涂相同厚度聚氨酯, 制备聚氨酯喷涂复合材料层合板。使用落锤冲击试验机反复冲击复合材料裸板与喷涂过聚氨酯的复合材料层合板, 直到其完全穿透, 通过超声波C扫描检测对冲击后试样的分层面积进行分析。结果表明: 随着冲击能量增大, 聚氨酯对复合材料层合板抗反复冲击性能的影响逐渐减弱, 冲击后试样的损伤面积逐渐增大; 随着层合板厚度的增加, 聚氨酯对复合材料层合板抗反复冲击性能的影响增强, 致使试样冲击后损伤面积减小。

关键词 复合材料聚氨酯涂层吸收能量冲击损伤面积最大冲击载荷抗反复冲击性能    
Abstract

The resistance to repeated low-velocity impact of PU coated composite laminates of different thickness was evaluated. The composite laminates were fabricated by compression molding method, and then were sand-blasted in order to increase their surface roughness, and finally were coated with PU of the same thickness. The composite laminates with and without PU coating were impacted repeatedly using a pressure-assisted Instron-Dynatup 9250 instrumented drop-weight impact tester until all the specimens were perforated, and then ultrasonic C-scan was used to detect the delimitation area after testing. It is observed that the influence of PU on the resistance to repeated impact of composite laminates is gradually decreasing after repeated impacting with the increasing of impacted energy, so the damage area of specimens are increasing after repeated impact. In addition, with the increasing thickness of composite laminates, the influence of PU acting on the resistance to repeated impact for all laminates is enhanced so that the damage area of specimens is gradually decreasing.

Key wordscomposite    polyurethane coating    absorbed energy    impact damage area    maximum impact force    repeated impact performance
收稿日期: 2015-10-12     
ZTFLH:  B332  
基金资助:* 天津市科技计划项目13TXSYJC40500和天津市高等学校科技发展基金计划项目2012ZD02资助
作者简介: 本文联系人: 张国利, 研究员
Code of
specimen
Number of
layers
Thickness
/mm
Weight
/g
[0/90]6 12 2.0 56.2
[0/90]7 14 2.4 59.5
[0/90]8 16 2.8 62.7
[0/90]6-PU 12 3.0 66.7
[0/90]7-PU 14 3.4 69.8
[0/90]8-PU 16 3.8 73.2
表1  试样的结构
图1  [0/90]6-PU在不同冲击能量下的冲击力-时间曲线和冲击力-位移曲线
图2  5 J反复冲击时的冲击力-冲击时间曲线
图3  6.5 J反复冲击时的冲击力-冲击时间曲线
图4  7.5 J反复冲击时的冲击力-冲击时间曲线
图5  不同冲击能量反复冲击过程中最大冲击载荷随冲击次数的变化
[0/90]6 No. of drops to perforation [0/90]6 -PU6 No. of drops to perforation
Impact energy Impact energy
5 J 8 5 J >60
6.5 J 6 6.5 J 51
7.5 J 3 7.5 J 12
表2  不同冲击能量反复冲击穿透[0/90]6 和[0/90]-PU6时的次数
图6  7.5 J反复冲击[0/90]6-PU (a) and [0/90]6 (b) 的冲击力-冲击时间曲线
图7  7.5 J反复冲击[0/90]7-PU (a) and [0/90]7 (b)的冲击力-冲击时间曲线
图8  7.5 J反复冲击[0/90]8 -PU (a) and [0/90]8 (b) 的冲击力-冲击时间曲线
图9  不同层合板厚度试样在7.5 J反复冲击过程中冲击背面损伤图
图10  不同厚度聚氨酯层合板的冲击载荷-冲击次数-冲击能量曲线
图11  [0/90]8和[0/90]8-PU反复冲击后的C扫描图像
图12  不同层合板厚度试样的损伤面积随冲击次数的变化
Laminate No. of drops to perforation Laminate No. of drops to perforation
[0/90]6 3 [0/90]6-PU 12
[0/90]7 5 [0/90]7-PU 24
[0/90]8 6 [0/90]8-PU 128
表3  不同厚度的试样完全穿透需要的冲击次数
1 Cesim Atas, Onur Sayman, An overall view on impact response of woven fabric composite plates, Compos. Struct., 82, 336(2008)
2 WANG Wensha, YAN Jianhua, GU Hailin, Investigation on impact properties of 2-D triaxial hybrid-braid laminated composites, Fiber Reinforced Plastics/Composite, 5, 47(2015)
2 (王文莎, 阎建华, 顾海麟,混杂编织层合复合材料低速冲击性能研究, 玻璃钢/复合材料, 5, 47(2015))
3 O. S.David-West, D. H. Nash, W. M. Banks, An experimental study of damage accumulation in balanced CFRP laminates due to repeated impact, Compos. Struct., 83, 247(2008)
4 Celal Evci, Müfit Gülgeç, An experimental investigation on the impact response of composite materials, Int. J. Impact Eng., 43, 40(2012)
5 Hiroshi Saito, Isao Kimpara, Evaluation of impact damage mechanism of multi-axial stitched CFRP laminate, Compos.: Part A, 37, 2226(2006)
6 Ercan Sevkat, Benjamin Liaw, Feridun Delale, Basavaraju B.Raju, Effect of repeated impacts on the response of plain-woven hybrid composites, Compos: Part B, 41, 403(2010)
7 K. Azouaoui, Z. Azari, G. Pluvinage, Evaluation of impact fatigue damage in glass/epoxy composite laminate, Int. J. Fatigue., 32, 443(2010)
8 HAO Kouan, WANG Zhenqing, ZHOU Limin, Impact behaviors and damage modes of composites under low-velocity impact with different layup thicknesses, Applied Mathematics and Mechanics, 34(7), 661(2013)
8 (郝扣安, 王振清, 周利民, 不同铺层厚度复合材料的低速冲击特性与损伤模式研究, 应用数学和力学, 34(7), 661(2013)
9 XIE Zonghong, LIU Haihan, ZHANG Zilong, Prediction on low velocity impact damage of interlayer-toughened composite laminate , Journal of Nanjing University of Aeronautics & Astronautics, 45(5), 686(2013)
9 (谢宗蕻, 刘海涵, 张子龙, 层间增韧复合材料层合板低速冲击损伤预测, 南京航空航天大学学报, 45(5), 686(2013))
10 Giovanni Belingardi, Maria Pia Cavatorta, Davide Salvatore Paolino, Repeated impact response of hand lay-up and vacuum infusion thick glass reinforced laminates, Int. J. Impact Eng., 35, 609(2008)
11 Sandrine Petit, Christophe Bouvet, Alain Bergerot, Jean-Jacques Barrau, Impact and compression after impact experimental study of a composite laminate with a cork thermal shield, Compos. Sci. Technol., 67, 3286(2007)
12 Ercan Sevkat, Benjamin Liaw, Feridun Delale, Basavaraju B.Raju, Effect of repeated impacts on the response of plain-woven hybrid composites, Compos.: Part B, 41, 403(2010)
13 W. A. de Morais, S. N. Monteiro, J. R. M. d' Almeida, Evaluation of repeated low energy impact damage in carbon-epoxy composite materials, Compos. Struct., 67, 307(2005)
14 P. Rahmé, C. Bouvet, S. Rivallant, V. Fascio, G. Valembois, Experimental investigation of impact on composite laminates with protective layers, Compos. Sci. Technol., 72, 182(2012)
15 HE Wei, GUAN Zhidong, WANG Jin, Experimental investigation of impact on composite laminates with protective layers, Acta Materiae Composite Sinica, 31(2), 485(2014)
15 (何为, 关志东, 王进, 带表面防护层复合材料层合板的低速冲击及冲击后压缩性能试验研究, 复合材料学报, 31(2), 485(2014))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.