Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (4): 262-268    DOI: 10.11901/1005.3093.2014.148
  本期目录 | 过刊浏览 |
石蜡/不同粒径膨胀石墨复合相变储热材料的制备和性能
田云峰,李珍(),王洋,曾萍,姜凌艺
中国地质大学材料与化学学院 武汉 430074
Preparation and Performance of a Phase Change Heat Storage Composite of Paraffin/Different Particle Sized Expanded Graphite
Yunfeng TIAN,Zhen LI(),Yang WANG,Ping ZENG,Lingyi JIANG
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
引用本文:

田云峰,李珍,王洋,曾萍,姜凌艺. 石蜡/不同粒径膨胀石墨复合相变储热材料的制备和性能[J]. 材料研究学报, 2015, 29(4): 262-268.
Yunfeng TIAN, Zhen LI, Yang WANG, Ping ZENG, Lingyi JIANG. Preparation and Performance of a Phase Change Heat Storage Composite of Paraffin/Different Particle Sized Expanded Graphite[J]. Chinese Journal of Materials Research, 2015, 29(4): 262-268.

全文: PDF(3057 KB)   HTML
摘要: 

用熔融共混法制备石蜡/不同粒径膨胀石墨复合相变储热材料, 对样品进行XRD、FT-IR、SEM、DSC和LFA表征分析, 研究了不同粒径膨胀石墨的质量比例对复合相变储热材料性能的影响。结果表明: 随着小粒径膨胀石墨含量的增加, 复合相变储热材料的热扩散系数先增大后减小。在大小粒径膨胀石墨质量比例为9∶1时, 石蜡充分利用了大小粒径膨胀石墨的镶嵌式空间结构, 复合相变材料的热扩散系数为1.964×10-6 m2/s, 比纯石蜡提高了22倍, 相变潜热为144.2 J/g。

关键词 复合材料大小粒径膨胀石墨石蜡镶嵌结构相变储热材料    
Abstract

As phase change heat storage material (PCM), composites of paraffin/expanded graphite of different particle sizes (DPS-EG) were prepared by melt blending method, which were then characterized by means of XRD, FT-IR, SEM, DSC and LFA. The effect of mass fraction of DPS-EG on performance of the composite PCM was studied. Results show that the thermal diffusivity of the composite PCM increased first and then decreased with the increasing mass fraction of small particle sized EG. When the ratio of mass fraction for large sized ones to the small ones of the DPS-EG was 9:1, paraffin may be allowed to fill fully into the free space of the mosaic structure of DPS-EG. The thermal diffusivity of the composite PCM was up to 1.964×10-6 m2/s, 22 times higher than that of pure paraffin, while its latent heat was 144.2 J/g.

Key wordscomposite materials    expanded graphite with different particle sizes    paraffin    mosaic structure    phase change heat storage material
收稿日期: 2014-03-31     
基金资助:* 全国大学生创新创业训练项目201310491014资助。
图1  制备EG/石蜡复合相变储热材料流程示意图
Sample PC-0 PC-1 PC-3 PC-5 PC-7 PC-10
EG-1 (<80 mesh) 10% 9% 7% 5% 3% 0
EG-2 (>200 mesh) 0 1% 3% 5% 7% 10%
表1  大粒径膨胀石墨与小粒径膨胀石墨比例
图2  两种EG的XRD谱
图3  两种EG的SEM像
图4  EG、石蜡和复合相变储热材料的XRD谱
图5  石蜡、EG和复合相变储热材料的红外光谱
图6  复合相变储热材料的SEM像
图7  复合相变储热材料的吸附性能
图8  石蜡和复合相变储热材料的热扩散率
图9  石蜡和复合相变储热材料的DSC曲线
Sample Latent heat/(J/g) Solid-solid Tm/℃ Solid-liquid Tm/℃
Paraffin 160.5 35.15 51.32
PC-10 144.8 35.04 50.95
PC-1 144.2 36.59 51.45
PC-0 145.2 35.01 50.41
表2  石蜡和复合相变储热材料的相变潜热和相变温度
1 ZHANG Yinping, HU Hanping, KONG Xiangdong, Phase Change Thermal Storage - Theory and Application (Hefei, China University of Technology Press, 1996)p.339
1 (张寅平, 胡汉平, 孔祥冬, 相变储热——理论与应用(合肥, 中国科技大学出版, 1996)p.339)
2 K. Pielichowska, K. Pielichowski,Phase change materials for thermal energy storage, Progress in Materials Science, 65, 67(2014)
3 ZHANG Helei,FANG Xiande, ZHAO Yingjie, Progress in phase change materials and technologies, Materials Review, 28(13), 26(2014)
3 (张贺磊, 方贤德, 赵颖杰, 相变储热材料及技术的研究进展, 材料导报, 28(13), 26(2014))
4 DAI Qin,ZHOU Li, ZHU Yue, HUANG Fei, Research progress in improving thermal conductivity of paraffin PCM, Contemporary Chemical Industry, 43(7), 1257(2014)
4 (戴琴, 周莉, 朱月, 黄飞, 改善石蜡相变材料导热性能的研究进展, 当代化工, 43(7), 1257(2014))
5 R. Velraj, R. V. Seeniraj, B. Hafner, C. Faber, K. Schwarzer,Heat transfer enhancement in a latent heat storage system, Solar Energy, 65(3), 171(1999)
6 S. Wu, D. Zhu, X. Zhang, J. Huang,Preparation and melting/freezing characteristics of Cu/paraffin nano-fluid as phase-change material (PCM), Energy & Fuels, 24(3), 1894(2010)
7 S. Wu, D. Zhu, X. Li,Thermal energy storage behavior of Al2O3-H2O nanofluids, Thermochimca Acta, 483(1), 73(2009)
8 ZHANG Qiuxiang, CHEN Jianhua, LU Hongbin, TANG Wei, LU Yu, GAO Yangzhi, Preparation and properties of fine particle size of paraffin microcapsule phase change materials, Chemical Journal of Chinese Universities, 35(10), 2258(2014)
8 (张秋香, 陈建华, 陆洪彬, 唐伟, 陆玉, 高扬之, 细粒径石蜡微胶囊相变材料的制备与性能, 高等学校化学学报, 35(10), 2258(2014))
9 ZHAO Mingwei,ZUO Xiaoqing, YANG Munan, WANG Jun, Thermal storage and release properties of aluminum foam - paraffin composite phase change materials, Journal of Functional Materials and Devices, 18(5), 391(2013))
9 (赵明伟, 左孝青, 杨牧南, 王俊, 泡沫铝-石蜡复合相变材料的蓄放热性能研究, 功能材料与器件学报, 18(5), 391(2013))
10 M Li,Z Wu, H Kao, J Tan, Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material, Energy conversion and management, 52(11), 3275(2011)
11 ZHANG Xiurong,ZHU Dongsheng, GAO Jinwei, WU Shuying, Study on thermal properties of graphite/paraffin composites as phase change heat storage material, Chinese Journal of Materials Research, 24(3), 332(2010)
11 (张秀荣, 朱冬生, 高进伟, 吴淑英, 石墨/石蜡复合相变储热材料的热性能研究, 材料研究学报, 24(3), 332(2010))
12 LIU Guoqin,LAI Qi, LI Yufeng, Effect of graphite granularity on the pore structure, Journal of Sichuan University (Natural Science Edition), 44(1), 141(2007)
12 (刘国钦, 赖奇, 李玉峰, 石墨粒度对膨胀石墨孔隙结构的影响, 四川大学学报: 自然科学版, 44(1), 141(2007))
13 L. Xia, P. Zhang, R. Z. Wang,Preparation and thermal characterization of expanded graphite/paraffin composite phase change material, Carbon, 48(9), 2538(2010)
14 HU Xiaodong, GAO Xuenong, LI Delun, CHEN Siting, Performance of paraffin/expanded graphite composite phase change materials, CIESC Journal, 64(10), 3831(2013)
14 (胡小冬, 高学农, 李得伦, 陈思婷, 石蜡/膨胀石墨定形相变材料的性能, 化工学报, 64(10), 3831(2013))
15 A. Sari, A. Karaipekli,Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Applied Thermal Engineering, 27(8), 1271(2007)
16 DU Cheng, LI Zhen, FENG Li, LU Jingyu, WANG Zengkui, The study of structural features of no-sulfur expanded graphite prepared by microwave , Initiators & Pyrotechnics, (4), 9(2009)
16 (杜 城, 李 珍, 冯 力, 吕净宇, 王增奎, 微波法制备无硫膨胀石墨结构特征研究, 火工品, (4), 9(2009))
17 ZHOU Jianwei, WANG Chubei, CHU Liangliang, Preparation and thermo-physical properties of paraffin /graphene oxide composite phase change materials, Speciality Petrochemicals, 30(2), 51(2013)
17 (周建伟, 王储备, 褚亮亮, 石蜡/氧化石墨烯复合相变材料的制备及其热物理性能, 精细石油化工, 30(2), 51(2013))
18 R. Radhakrishnan, K.E. Gubbins,Free energy studies of freezing in slit pores: an order-parameter approach using Monte Carlo simulation, Molecular Physics, 96(8), 1249(1999)
19 R. Radhakrishnan, K. E. Gubbins, A. Watanabe, K. Kaneko,Freezing of simple fluids in microporous activated carbon fibers: comparison of simulation and experiment, The Journal of chemical physics, 111(19), 9058(1999)
20 ZHANG Dong,WU Keru, Tuning effect of porous structure on phase changing behavior of organic phase changing matters, Journal of Tongji University: Natural Science, 32(9), 1163(2004)
20 (张东, 吴科如, 孔结构对有机相变物质相变行为的调节作用, 同济大学学报: 自然科学版, 32(9), 1163(2004))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.