Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (5): 495-502    
  研究论文 本期目录 | 过刊浏览 |
Pb--0.3%Ag/Pb--Co3O4复合惰性阳极材料的电化学性能
孔营1,2, 徐瑞东1,2, 黄利平2, 关永永1,2,  徐瑞东1,2
1.昆明理工大学冶金与能源工程学院 昆明 650093
2.云南省复杂有色金属资源清洁利用国家重点实验室培育基地 昆明 650093
3.中国科学院特种无机涂层重点实验室 上海 200050
Electrochemical Properties of Pb–0.3%Ag/Pb–Co3O4 Composite Inert Anodes
KONG Ying1,2,  XU Ruidong1,2,  HUANG Liping2,  GUAN Yongyong1,2,  CHEN Buming1,2
1.Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093
2.State Key Laboratory Breeding Base of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan Province, Kunming 650093
3.Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050
引用本文:

孔营 徐瑞东 黄利平 关永永 徐瑞东. Pb--0.3%Ag/Pb--Co3O4复合惰性阳极材料的电化学性能[J]. 材料研究学报, 2012, 26(5): 495-502.
KONG Ying XU Ruidong HUANG Liping GUAN Yongyong CHEN Buming. Electrochemical Properties of Pb–0.3%Ag/Pb–Co3O4 Composite Inert Anodes[J]. Chinese Journal of Materials Research, 2012, 26(5): 495-502.

全文: PDF(1104 KB)  
摘要: 

在Pb--0.3%Ag合金基体表面制备了Pb--0.3%Ag/Pb--Co3O4复合惰性阳极材料, 研究了不同正向脉冲平均电流密度(2--5A•dm-2)和镀液中Co3O4颗粒浓度(10--40 g/L)下制备的复合惰性阳极材料电化学性能, 在50 g•L-1Zn2+, 150 g•L-1 H2SO4, 35℃溶液中测试了阳极极化曲线、循环伏安曲线和塔菲尔曲线, 获得了析氧动力学参数、伏安电荷、腐蚀电位和腐蚀电流。结果表明: 在3 A/dm2正向脉冲平均电流密度和30 g/LCo3O4颗粒浓度下制备的Pb--0.3%Ag/Pb--Co3O4复合惰性阳极材料具有较高的电催化活性, 较低的析氧过电位, 较好的电极反应可逆性和耐腐蚀性。在500 A/m2测试电流密度下的析氧过电位为0.891 V, 比Pb--1%Ag合金降低280 mV;伏安电荷q*为0.725 C•cm-2, 比Pb--1%Ag合金提高26.5%;腐蚀电流也明显低于Pb--1%Ag合金。复合惰性阳极材料活性表面积大, 活性物质数量多提高了在[ZnSO4+H2SO4]溶液中的析氧电催化活性。沉积层晶粒细小而均匀, 组织结构致密, 真实表面缺陷少提高了耐腐蚀性。

关键词 复合材料双脉冲电沉积复合惰性阳极材料Co3O4颗粒电化学性能    
Abstract

Pb–0.3%Ag/Pb–Co3O4 composite inert anodes were prepared on the surface of Pb–0.3%Ag substrates, the electrochemical properties of the composite inert anodes obtained under different forward pulse average current densities from 2 A/dm2 to 5 A/dm2 and different Co3O4 concentrations from 10 g/L to 40 g/L in bath were investigated. The anodic polarization curves, cyclic voltammetry curves and Tafel polarization curves were measured in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+ and 150 g/L H2SO4 at 35 , the kinetic parameters of oxygen evolution, voltammetry charge, corrosion potential and corrosion current were obtained. The results show that Pb–0.3%Ag/Pb–Co3O4 composite inert anode obtained under forward pulse average current density of 3 A/dm2 and Co3O4 concentration
of 30 g/L in bath, possess higher electrocatalytic activity, lower overpotential of oxygen evolution, better reversibility of electrode reaction and corrosion resistance in a synthetic zinc electrowinning electrolyte. The overpotential of oxygen evolution of the composite inert anode is 0.891 V under 500 A/m2, and it is 280 mV lower than that of Pb–1%Ag alloy; the surface voltammetry charge q∗ is 0.725 C·cm−2, and is 26.5% higher than that of Pb–1%Ag alloy; the corrosion current is also lower than that of Pb–1%Ag alloy. Large active surface areas and active substance numbers on the surface of the composite inert anode improve the electrocatalytic activity for oxygen evolution in [ZnSO4+H2SO4] solution. Fine and uniform grains, compact microstructures and fewer surface defects increase the corrosion resistance of the composite inert anode.

Key wordscomposite materials    double–pluse electrodeposition    composite inert anod    Co3O4    electrochemical properties
收稿日期: 2012-07-09     
ZTFLH:  TB321  
基金资助:

国家自然科学基金51004056和中国科学院特种无机涂层重点实验室开放基金KKZ6201152009资助项目。

1 HU Xinfa,LIU Quanbing, LIAO Shijun, Progress on development and research of coated titanium insoluble anode, Journal of Materials Protection, 41(8), 4l(2008)

(胡新发, 刘全兵, 廖世军, 钛基涂层不溶性阳极的开发与研究进展, 材料保护,  41(8), 4l(2008))

2 J.Aromaa, O.Fors´en, Evaluation of the electrochemical activity of a Ti–RuO2–TiO2 permanent anode, Electrochimica Acta, 51(27), 6104(2006)

3 X.Wang, D.Tang, J.G.Zhou, Microstructure, morphology and electrochemical property of RuO2 70 SnO2 30 mol% and RuO2 30 SnO2 70 mol% coatings, Journal of Alloys and Compound, 430(1–2), 60(2007)

4 J.Ribeiro, A.R.De Andrade,Characterization of RuO2–Ta2O5 coated titanium electrode: Microstructure, morphology, and electrochemical investigation, Journal of The Electrochemical Society, 151(10), 106(2004)

5 C.C.You, A.Chompoosor, V.M.Rotello, The biomacromolecule nanoparticle interface, Nano Today, 2(3), 34(2007)

6 Trasatti S, Physical electrochemistry of ceramic oxides, Elcctrochimica Acta, 36(2), 225(I991)

7 C.N.Ho, B.J.Hwang, Effect of hydrophobicity on the hydrophobic–modified polytetrafluoroethylene/PbO2 electrode towards oxygen evolution, Journal of Electroanalytical Chemistry, 377(1/2), 177(1994)

8 S.Cattarin, P.Guerriero, M.Musiani, Preparation of anodes for oxygen evolution by electrodeposition of composite Pb and Co oxides, Electrochimica Acta, 46(26–27), 4229(2001)

9 M.Musiani, F.Furlanetto, P.Guerriero, Electrochemical deposition and properties of PbO2+Co3O4 composites, Journal of Electroanalytical Chemistry, 440(1), 131(1997)

10 C.Iwakura, M.Matsuoka, T.Kohno, Mixing effect of metal oxides on negative electrode reactions in the nickel–hydride battery, Journal of the Electrochemical Society, 141(9), 2306(1994)

11 ZHANG Rui, CHEN Youcun, Synthesis of Pt/Co3O4 nanocomposite and its electrocatalytic activity, Journal of Anqing Teachers College (Natural Science Edition), 17(2), 75(2011)

(张 锐, 陈友存, Pt/Co3O4纳米复合材料的合成及其电催化性质, 安庆师范学院学报(自然科学版),  17(2),75(2011))

12 ZHANG Yuping, Recent development of anode for electrowinning zinc, Hydrometallurgy of China, 20(4), 167(2001)

(张玉萍, 锌电积用阳极的研究与发展, 湿法冶金,  20(4), 167(2001))

13 W.B.Cai, Y.Q.Wan, H.T.Liu, A study of the reduction process of anodic PbO2 film on Pb in sulfuric acid solution, Journal of Electroanalytical Chemistry, 387(1–2), 95(1995)

14 S.Nijer, J.Thonstad, G.M.Haarberg, Cyclic and linear voltammetry on Ti/IrO2–Ta2O5–MnOX electrodes in sulfuric acid containing Mn2+ ions, Electrochimica Acta, 46(23), 3503(2001)

15 CHEN Zhenfang, JIANG Hanying, SHU Naide, Kinetics of oxgen evolution reaction on PbO2–Ti/MnO2 electrode and the electrocatalysis, Acta Metallurgica Sinica, 28(2), B50(1992)

(陈振方, 蒋汉瀛, 舒奈德, PbO2--Ti/MnO2电极上析氧反应动力学及电催化, 金属学报,  28(2), B50(1992))

16 LI Aosheng, LIU Kaiyu, ZHANG Qingqing, Electrochemical performance of the AB5–type hydrogen storage alloy adding Co3O4,Battery Bimonthly, 40(4), 201(2010)

(李傲生, 刘开宇, 张青青, 添加Co3O4的AB5型贮氢合金的电化学性能, 电池,  40(4), 201(2010))

17 CHANG Gang, JIANG Zucheng, PENG Tianyou, HU Bin, Preparation of high–specific–surface–srea nanometer–sized alumina by sol–gel method and study on adsorption behaviors

of transition metal ions on the alumina powder witll ICP–AES, Acta Chimica Sinica, 60(1), 100(2003)

(常 钢, 江祖成, 彭天右, 胡 斌, 溶胶--凝胶法制备高比表面积的纳米氧化铝及其对过渡金属离子吸附行为的研究, 化学学报,  60(1), 100(2003))

18 L.A.Da Silva, J.F.C.Boodts, L.A.DeFaria, ‘In situ’ and ‘ex situ’ characterization of the surface properties of the RuO2(x)+Co3O4(1−x) system, Electrochimica Acta, 45(17), 2719(2000)

19 H.Vogt, Note on a method to interrelate inner and outer electrode areas, Electrochimica Acta, 39(13), 1981(1994)

20 WANG Yaqiong,TONG Hongyang,XU Wenlin, Electrocatalytic activity of Ti/TiO2 electrodes in H2SO4 solution, Chinese Journal of Process Engineering, 3(4), 356(2003)

(王雅琼, 童宏扬, 许文林, Electrocatalytic activity of Ti/TiO2 electrodes in H2SO4 solution, 过程工程学报,  3(4), 356(2003))

21 K.W.Kim, E.H.Lee, J.S.Kim, K.H.Shin, K.H.Kim, Study on the electro–activity and non–stochiometry of a Ru– based mixed oxide electrode, Electrochimca Acta, 46(6), 9l5(2001)

22 WANG Yaqiong, TONG Hongyang, XU Wenlin, Study on the structure and electrocatalytical activity of Ti/TiO2 electrode prepared by polymeric precursor method,Rare Metal Materials and Engineering, 34(3), 455(2005)

(王雅琼, 童宏扬, 许文林, 聚合前驱体法制备Ti/TiO2电极的结构和电催化活性, 稀有金属材料与工程,  34(3), 455(2005))

23 L.A.Da Silva, V.A.Alves, S.Trasatti, Surface and electrocatalytic properties of ternary oxides Ir0.3Ti(0.7−x)PtxO2, Oxygen evolution from acidic solution, Journal of Electroanalytical

Chemistry, 427(1-2), 97(1997)

[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.