Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (5): 551-556    
  研究论文 本期目录 | 过刊浏览 |
添加Co对碳化钨颗粒增强表层复合材料性能的影响
山泉, 李祖来, 蒋业华, 周荣, 隋育栋, 陈志辉
昆明理工大学材料科学与工程学院 昆明 650093
Effect of Co Addition on Microstructure of Matrix in Tungsten Carbide Surface Reinforced Composite
SHAN Quan, LI Zulai, JIANG Yehua, ZHOU Rong, SUI Yudong, CHEN Zhihui
School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093
引用本文:

山泉 李祖来 蒋业华 周荣 隋育栋 陈志辉. 添加Co对碳化钨颗粒增强表层复合材料性能的影响[J]. 材料研究学报, 2012, 26(5): 551-556.
SHAN Quan LI Zulai JIANG Yehua ZHOU Rong SUI Yudong CHEN Zhihui. Effect of Co Addition on Microstructure of Matrix in Tungsten Carbide Surface Reinforced Composite[J]. Chinese Journal of Materials Research, 2012, 26(5): 551-556.

全文: PDF(1098 KB)  
摘要: 

制备WC--Co表层增强复合材料, 观测复合层的显微组织和基体中的生成相, 研究了添加Co对碳化钨颗粒增强表层复合材料性能的影响。结果表明: Co的加入使复合层中的基体组织中产生了细小粒状珠光体和屈氏体, 降低了材料的脆性倾向, 提高材料整体性能。金属液浸入预制层后, 沿基材至复合层表面方向, 金属液的温度递减, 热扩散作用小, 增加复合层内部基体成分不均匀性。当基体中的W、C原子浓度升高, 基体中析出η型Co3W3C碳化物。在复合层冷却至1200℃之前, 基体能够与碳化钨颗粒发生界面反应生成Co3W3C碳化物, 提高基体的硬度, 从而提高复合材料的耐磨性。

关键词 复合材料表层复合材料V--EPC粒状珠光体Co3W3C界面反应    
Abstract

WC–Co surface reinforced composite was formed by V–EPC (vacuum– expendable pattern casting), and the microstructure of the matrix in the composite was investigated. The results show that the Co addition caused the appearance of granular pearlite and troostite in the matrix, therefore the brittle tendency of the composite was lightened. After the molten steel infiltrating into the preform, the counter–diffusion in matrix decreased from the substrate to the surface of composite, the composition of the matrix became more uneven, and the formation of the spheroidal pearlite and troostite were facilitated. When the atomic concentration of W and C in the matrix increased, Co3W3C, η type carbide, was easier to be separated out. Before the temperature of the composite drop to 1200℃, Co3W3C could precipitate in the interface reaction between the matrix and the tungsten carbide particles, the hardness of the matrix would be increased, and then the abrasive resistance of the composite could be improved.

Key wordscomposites    surface composite    V–EPC    granular pearlite    Co3W3C    interface reaction
收稿日期: 2012-03-29     
ZTFLH:  TB33  
基金资助:

国家自然科学基金50871048资助项目。

1 C.P.Paul, H.Alemohammad, E.Toyserkani, A.Khajepour, S.Corbin, Cladding ofWC–12 Co on low carbon steel using a pulsed Nd: YAG laser, Materials Science and Engineering

A, 464, 170(2007)

2 Gerhard Gille, J. Bredthauer, B. Gries, Advanced and new grades of WC and binder powder–their properties and application, International Journal of Refractory Metals & Hard Materials, 18, 87(2000)

3 R.Polini, M.Delogu, G.Marcheselli, Adherent diamond coatings on cemented tungsten carbide substrates with new Fe/Ni/Co binder phase, Thin Solid Films, 494, 133(2006)

4 O.O.Eso, FAN Peng, Z.Z.Fang, A kinetic mould for cobalt gradient formation during liquid phase sintering of functionally graded WC–Co, International Journal of Refractory Metals & Hard Materials, 26, 91(2008)

5 LIU Xuemei, SONG Xiaoyan, ZHANG Jiuxing, ZHAO Shixian, Temperature distribution and neck formation of WC—-Co combined particles during spark plasma sintering, Materials Science and Engineering A, 488, 1(2008)

6 Mark Fitzsimmons, Vinod K. Sarin, Development of CVD WC–Co coatings, Surface and Coatings Technology, 137, 158(2001)

7 G.Bolelli, B.Bonferroni, G.Coletta, L.Lusvarghi, F.Pitaccol, Wear and corrosion behavior of HVOF WC–CoCr/CVD DLC hybrid coating systems deposited onto aluminum substrate, Surface and Coatings Technology, 205, 4211(2011)

8 YE Cheng, DU Xiaodong, YANG Haoyu, Analysis of microstructure and properties of particles reinforced cladding layer on the steel surface, Chinese journal of materials research, 26(1), 55(2012)

(叶 诚, 杜晓东, 杨皓宇, 钢表面颗粒增强熔覆层的组织和性能, 材料研究学报, 26(1), 55(2012))

9 Zulai Li, Yehua Jiang, Rong Zhou, Dehong Lu, Rongfeng Zhou. Dry three–body abrasive wear behavior ofWC reinforced iron matrix surface composites produced by V–EPC infiltration casting process, Wear, 262, 649(2007)

10 HAN Dewei, TIAN Rongzhang, Measurement Technique Handbook of Metal Hardness (Changsha, Central South University Press, 2003) p.337

(韩德伟, 田荣章,  金属硬度检测技术手册 (长沙, 中南大学出版社, 2003) p.337)

11 CUI Zhongqi, Metallography and Heat Treatment (Beijing, China Machine Press, 2000) p.236

(崔忠圻,  金属学与热处理  (北京, 机械工业出版社, 2000) p.236)

12 G.S.Upadhyaya, Cemented Tungsten Carbides: Production, Properties, and Testing, (New Jersey, Noyes Publications, 1998) p.7

13 D.V.Suetin, I.R.Shein, A.L.Ivanovskii, Structural, electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations, Physical B, 403, 2654(2008)

14 XIAO Yifeng, HE Yuehui, FENG Ping, XIE Hong, ZHANG Lijuan, HUANG Ziqian, HUANG Baiyun, Effects of carbon content on microstructure and properties of carbon–deficient cemented carbides, The Chinese Journal of Nonferrous Metals, 17(1), 39(2007)

(肖逸锋, 贺跃辉, 丰 平, 谢 宏, 张丽娟, 黄自谦, 黄伯云, 碳含量对缺碳硬质合金组织和性能的影响, 中国有色金属学报,  17(1), 39(2007))

15 LI Wenbo, YANG Yi, LIU Jian, YANG Gang, Effect of heating rate on sintering behavior of WC–Co cemented carbide under an electric field, Transactions of Materials and Heat Treatment, 31(8), 34(2010)

(李文波, 杨 屹, 刘 剑, 杨 刚, 升温速度对电场烧结硬质合金的影响, 材料热处理学报,  31(8), 34(2010))

16 J.A.Dean, Lange’s Handbook of Chemistry, 11th edition (Beijing, Science Press, 1991) p.4–40

(J.A.迪安,  兰氏化学手册, 11版(北京, 科学出版社, 1991) p.4--40)

17 A.Z.Antoni, J.Y.Shen, M.C.Durand, About one stable and three metastable eutectic microconstituents in the Fe–W– C system, International Journal of Refractory Metals & Hard Materials, 26, 372(2008)

18 B.Reichel, K.Wagner, D.Janisch, W.Lengauer, Alloyed W—(Co, Ni, Fe)—C phases for reaction sintering of hardmetals, International Journal of Refractory Metals & Hard Materials, 28, 638(2010)

19 D.V.Shtansky, G.Inden, Phase transformation in Fe–Me– C and Fe–W–C steel–I. the structural evolution during tempering at 700 , Acta Material, 45, 2861(1997)

[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.