Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (1): 37-43    
  研究论文 本期目录 | 过刊浏览 |
特殊形态结构导电高分子复合材料的电学性能
陆昶, 胡小宁, 赫玉欣, 刘继纯, 张玉清
河南科技大学化工与制药学院 高分子科学与纳米技术校重点实验室 洛阳 471003
Electrical Properties of Conductive Polymer Composites With Special Morphology
LU Chang, HU Xiaoning, HE Yuxin, LIU Jichun, ZHANG Yuqing
Key Lab of Polymer Science and Nanotechnology, Chemical Engineering & Pharmaceutics School, Henan University of Science and Technology, Luoyang 471003
引用本文:

陆昶 胡小宁 赫玉欣 刘继纯 张玉清. 特殊形态结构导电高分子复合材料的电学性能[J]. 材料研究学报, 2012, 26(1): 37-43.
, , , , . Electrical Properties of Conductive Polymer Composites With Special Morphology[J]. Chin J Mater Res, 2012, 26(1): 37-43.

全文: PDF(902 KB)  
摘要: 先使聚丙烯接枝马来酸酐(PP--g--MAH)与炭黑(CB)反应, 再与聚丙烯/尼龙6(PP/PA6)共混制备出CB位于两相界面处的PP/PA6/PP--g--MAH/CB导电高分子复合材料,
研究了材料的特殊结构和电学性能。结果表明, 在PP/PA6/CB体系中CB粒子分布在PA6相, 体系的逾渗阈值为2%; 而在PP/PA6/PP--g--MAH/CB体系中, CB被PP--g--MAH诱导分布在两相界面处。PP/PA6两相为海岛结构时, PP/PA6/PP--g--MAH/CB体系仍可导电。PP/PA6/PP--g--MAH/CB体系的逾渗阈值降至1.6%, 低于PP/PA6/CB体系。体系的正温度效应(PTC)强度远高于PP/PA6/CB体系, 在90-135℃范围内不出现负温度效应(NTC)。PP/PA6/PP--g--MAH/CB体系的电学性能归结于其特殊的界面形态结构: 导电通道由位于共混物界面处的PP--g--MAH和CB构建而成。
关键词 复合材料导电高分子复合材料形态结构逾渗阈值正温度效应    
Abstract:The maleic anhydride grafted polypropylene (PP–g–MAH) was first reacted with carbon black (CB) and then blended with polypropylene/nylon6 (PP/PA6) to prepare the PP/PA6/PP–g–MAH/CB composites. The special morphology and electrical properties of the composites were investigated. The results show that in PP/PA6/CB blends, CB preferentially localizes in the PA6 phase and the percolation threshold is 2%. However, in the PP/PA6/PP–g–MAH/CB blends, CB particles can be induced by PP–g–MAH to localize at the interface. The composites of PP/PA6/PP–g–MAH/CB have conductivity even when PA6 and PP phases form sea–island morphology. The percolation threshold of PP/PA6/PP–g–MAH/CB is 1.6%, which is lower than that of PP/PA6/CB. Moreover, the PTC (positive temperature coefficient) intensity of PP/PA6/PP–g–MAH/CB composites is stronger than that of PP/PA6/CB, and the negative temperature coefficient (NTC) effect was eliminated within the temperature range of 90 and 135?C. The electrical properties of PP/PA6/PP–g–MAH/CB can be explained in terms of its special interface morphology: PP–g–MAH and CB localize at interface to form the conductive pathways.
Key wordscomposites    conductive polymer composites    morphology    percolation threshold    positive temperature coefficient
收稿日期: 2011-11-16     
ZTFLH: 

TB332

 
基金资助:

国家自然科学基金51003024和河南省高等学校青年骨干教师资助计划资助项目。

1 R.Strumpler, J.Glatz--Reichenbach, Conducting polymer composites, J. Electroceram,  3 (4), 329(1999)

2 J.C.Huang, Carbon black filled conducting polymers and polymer blends, Adv. Polym. Technol.,  21 (4), 299(2002)

3 YIN Hebin, BAO Hada, LI Jie, GUO Zhaoxia, YU Jian, Electrical properties of multiwalled carbon nanotube/carbon black hybrid filler filled polyoxymethylene composites, Acta Polymerica Sinica, (9), 1152(2010)

(尹贺滨, 鲍哈达, 李杰, 郭朝霞, 于建, 碳纳米管/炭黑混杂填充聚甲醛复合材料导电性能研究, 高分子学报, (9), 1152(2010))

4 M.Sumita, K.Sakata, Y.Hayakawa, S.Asai, K.Miyasaka, M.Tanemura, Double percolation effect on the electrical conductivity of conductive particles filled polymer blends, Colloid. Polym. Sci.,  270 (2), 134(1992)

5 M.Q.Zhang, Y.H.Gang, M.Zeng, H.B.Zhang, Y.H.Hou, Two--step percolation in polymer blends filled with carbon black, Macromolecules,  31 (19), 6724(1998)

6 J.Y.Feng, C.M.Chan, Positive and negative temperature coefficient effects of an alternating copolymer of tetrafluoroethylene--ethylene containing carbon black--filled HDPE particles, Polymer,  41 (12), 7279(2000)

7 Y.Bin, C.Xu, D.Zhu, M.Matsuo, Electrical properties of polyethylene and carbon black particleblends prepared by gelation/crystallization from solution, Carbon,  40 (2), 195(2002)

8 H.Yui, G.Z.Wu, H.Sano, M.Sumita, K.Kino, Morphology and electrical conductivity of injection--molded polypropylene/carbon black composites with addition of high--density polyethylene, Polymer,  47 (10), 3599(2006)

9 Z.B.Xu, C.Zhao, A.J.Gu, Z.P.Fang, Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black, J. Appl. Polym. Sci.,  106 (3), 2008(2007)

10 YANG Bo, CHEN Xiaolang, CHEN Guangshun, GUO Shaoyun, Morphology and conductivity of conductive carbon black filled PP--EAA composites, Acta Materiae Compositae Sinica,  24 (3), 78(2007)\par

(杨波, 陈晓浪, 陈光顺, 郭少云, 导电炭黑填充PP--EAA 复合材料的形态及电性能, 复合材料学报,  24 (3), 78(2007))

11 Z.M.Li, X.B.Xu, A.Lu, K.Z.Shen, R.Huang, M.B.Yang, Carbon black/poly(ethylene terephthalate)/polyethylene composite with electrically conductive in situ microfiber network, Carbon,  42 (2), 428(2004)

12 F.Gubbels, R.Jerome, P.H.Teyssie, E.Vanlathem, R.Deltour, A.Calderone, Selective localization of carbon black in immiscible polymer blends: a useful tool to design electrical conductive composites, Macromolecules,  27 (7), 1972(1994)

13 S.X.Xu, M.Wen, J.Li, S.Y.Guo, M.Wang, Q.Du, Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler, Polymer, 49 (22), 4861(2008)

14 M.Sumita, K.Sakata, S.Asai, K.Miyasaka, H.Nakagawa, Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black, Polym. Bull.,  25 (2), 265(1991)

15 F.Gubbels, R.Jerome, E.Vanlathem, R.Deltour, S.Blacher, F.Brouers, Kinetic and Thermodynamic Control of the Selective Localization of Carbon Black at the Interface of Immiscible Polymer Blends, Chem. Mater.,  10 (5), 1227(1998)

16 K.Dai, X.B.Xu, Z.M.Li, Electrically conductive carbon black (CB) filled in situ microfibrillar poly (ethylene terephthalate)(PET)/polyethylene (PE) composite with a selective CB distribution, Polymer,  48 (3), 849(2007)

17 J.Feng, C.M.Chan, J.X.Li, A method to control the dispersion of carbon black in an immiscible polymer blend, Polym. Eng. Sci.,  43 (5), 1058(2003)

18 M.H.Al--Saleh, U.Sundararaj, Nanostructured carbon black filled polypropylene/polystyrene blends containing styrene--butadiene--styrene copolymer: Influence of morphology on electrical resistivity, Europ. Polym. J., 44 (7), 1931(2008)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.