Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (5): 449-454    
  研究论文 本期目录 | 过刊浏览 |
(Fe, Ni)4N包覆(Fe, Ni)纳米复合粒子的微波吸收特性
王 飞,  黄 昊,  薛方红, 郭道远,  赵亚楠,  董星龙
大连理工大学材料科学与工程学院 大连 116023
Microwave Absorption of (Fe, Ni) Nanocomposites Coated by (Fe, Ni)4N
WANG Fei, HUANG Hao, XUE Fanghong, GUO Daoyuan, ZHAO Yanan, DONG Xinglong
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116023
引用本文:

王 飞 黄 昊 薛方红 郭道远 赵亚楠 董星龙. (Fe, Ni)4N包覆(Fe, Ni)纳米复合粒子的微波吸收特性[J]. 材料研究学报, 2011, 25(5): 449-454.
, , , , . Microwave Absorption of (Fe, Ni) Nanocomposites Coated by (Fe, Ni)4N[J]. Chin J Mater Res, 2011, 25(5): 449-454.

全文: PDF(1086 KB)  
摘要: 以直流电弧等离子体法制备(Fe, Ni)的纳米粒子为前驱体, 分别在350oC、400oC和450oC的氨气气氛中, 通过热氨解反应合成(Fe, Ni)4N包覆(Fe, Ni)纳米复合粒子。应用XRD, TEM, VSM, 微波矢量网络分析仪对纳米粒子相成分、形貌、磁性和电磁参数进行了分析。结果表明, 形成了(Fe, Ni)4N包覆(Fe, Ni)纳米复合粒子。与前驱体粉体相比, 纳米复合粒子的多重极化提高了复介电常数, 且表现出明显的介电共振行为; 而复磁导率呈现相似的变化规律, 在8.0 GHz处出现了自然共振峰。利用电磁参数模拟微波吸收特性得出, 氮化处理后复合粒子在3.6--7.8 GHz和2.0--6.4 GHz频率范围内具有良好的吸波性能(反射损耗R<-10 dB), 最小反射损耗分别为-53.5 dB, -34.5 dB, 可作为低频吸波剂。
关键词 复合材料(Fe, Ni)4N直流电弧等离子法复合粒子电磁性能吸波材料    
Abstract:(Fe, Ni)4N--coated (Fe, Ni) nanoparticles were synthesized by the thermal ammonolysis reaction in a NH3 atmosphere at 400℃ and 450℃ using  (Fe, Ni) nanoparticles as the precursor. The phase structure, composition, morphology, and the magnetic properties of the composite nanoparticles were examined by XRD, TEM and VSM. By dispersing the nanoparticles homogeneously into a paraffin matrix, the electromagnetic parameters of the nanoparticles were investigated in the frequency range of 2--18 GHz. The result show that the composite nanoparticles were (Fe, Ni) which were coated by (Fe, Ni)4N. Compared to precursor nanoparticles, the composite particles after nitriding had a larger complex permittivity due to multi-dielectric polarization, while the complex permeability exhibited a similar change tendency and a natural resonance peak at 7.8 GHz. It is calculated that the excellent microwave absorption (R<-10 dB)was obtained in the frequency range of 3.6--7.8 GHz and 2.0--6.4 GHz band, and that the minimum reflection loss were -53.5 dB and -34.5 dB at 3.2 GHz and 4.8 GHz for the composite particles at the nitriding temperatures of 400℃ and 450℃, respectively. It may be used as a radar absorption material at low frequencies.
Key wordscomposites    (Fe, Ni)4N    DC arc plasma    composite particles    electromagnetic properties    microwaving absorption materials
收稿日期: 2011-01-17     
ZTFLH: 

TM25

 
基金资助:

国家自然科学基金50801008资助项目。

1 X.A.Li, X.J.Han, Y.J.Tan, P.Xu, Preparation and microwave absorption properties of Ni-B alloy-coated Fe3O4 particles, Journal of Alloys and Compounds, 464(2), 352(2008)

2 K.Jia, R.Zhao, J.C.Zhong, X.B.Liu, Preparation and microwave absorption properties of loose nanoscale Fe3O4 spheres, Journal of Magnetism and Magnetic Materials, 322(15), 2167(2010)

3 J.R.Liu, M.Itoh, K.Machida, GHz range absorption properties of ε–Fe3N/Y2O3 nanocomposites derived from Y2Fe17 intermetallic compounds, Electrochemical and Solid–State Letters, 7(3), J9(2004)

4 M.G.Han, W.Tang, W.B.Chen, H.Zhou, L.J.Deng, Effect of shape of Fe particles on their electromagnetic properties within 1–18 GHz range, Journal of Applied Physics, 107(9), 09A958(2010)

5 J.Q.Wei, J.B.Wang, Q.F.Liu, L.Qiao, T.Wang, F.S.Li, Enhanced microwave absorption properties of Fe3Al/Al2O3 fine particle composites, Journal of Physics D: Applied Physics, 43(11), 115001(2010)

6 Y.Q.Kang, M.S.Cao, J.Yuan, L.Zhang, B.Wen, X.Y.Fang, Preparation and microwave absorption properties of basalt fiber/nickel core-shell heterostructures, Journal of Alloys and Compounds, 495(1), 254(2010)

7 J.R.Liu, M.Itoh, K.Machida, Electromagnetic wave absorption properties of α–Fe/Fe3B/Y2O3 nanocomposites in gigahertz range, Applied Physics Letter, 83(19), 4018(2003)

8 X.G.Liu, Z.Q.Ou, D.Y.Geng, Z.Han, J.J.Jiang, W.Liu, Z.D.Zhang, Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles, Carbon, 48(3), 891(2010)

9 R.C.Che, L.M.Peng, X.F.Duan, Q.Chen, X.L.Liang, Microwave absorption enhancement and complex permittivity  and permeability of Fe encapsulated within carbon nanotubes, Advanced Materials, 16(5), 401(2004)

10 H.Huang, B.Lu, J.P.Lei, X.L.Dong, Low-temperature nitridation of Fe nanoparticles precursor, Journal of Nanoscience and Nanotechnology, 9(12), 7504(2009)

11 LIU Zhiwei, YANG Dongfang, ZHAO Huiyou, Preparation and microwave characterization of ultrafine nitriding magnetic particles, Journal of Materials Engineering, (2), 32(2007)

(刘志伟, 杨东方, 赵会友, 铁氮化合物吸收剂的制备及其微波吸收特性的研究, 材料工程, (2), 32(2007))

12 S.J.Yan, L.Zhen, C.Y.Xu, W.Z.Shao, Microwave absorption properties of FeNi3 submicrometre spheres and SiO2@FeNi3 core–shell structures, Journal of Physics D: Applied Physics, 43(24), 245003(2010)

13 Siberchicot B, Effects of hydrogen absorption on physical properties of γ'-Fe4N, Journal of Magnetism and Magnetic Materials, 321(20), 3424(2009)

14 S.Kurian, N.S.Gajbhiye, Low temperature and in-field M¨ossbauer spectroscopic studies of ε–Fe3N particles synthesized from iron-citrate complex, Chemical Physics Letters, 493(6), 299(2010) 

15 Y.W.Zhao, C.Y.Ni, D.Kruczynski, X.K.Zhang, Q.Xiao, Exchange-coupled soft magnetic FeNi–SiO2 nanocomposite, The Journal of Physical Chemistry B, 108(12), 3692(2004)

16 S.K.Chen, S.Jin, T.H.Tiefel, Y.F.Hsieh, E.M.Gyorgy, D.W.Johnson, Q.Xiao, Magnetic properties and microstructure of Fe4N and (Fe, Ni)4N, Journal of Applied physics, 70(10), 6248(1991)

17 X.F.Zhang, X.L.Dong, H.Huang, B.Lv, J.P.Lei, C.J.Choi, Microstructure and microwave absorption properties of carbon-coated iron nanocapsules, Journal of Physics D: Applied Physics, 40(17), 5383(2007)

18 T.D.Zhou, P.H.Zhou, D.F.Liang, L.J.Deng, Structure and electromagnetic characteristics of flaky FeSiAl powders made by melt–quenching, Journal of Alloys and Compounds, 484(2), 548(2009)

19 B.S.Zhang, G.Lu, Y.Feng, J.Xiong, H.X.Lu, Electromagnetic and microwave absorption properties of Alnico powder composites, Journal of Magnetism and Magnetic Materials, 299(1), 209(2006)

20 L.Zhang, H.Zhu, Y.Song, Y.M.Zhang, Y.Huang, The electromagnetic characteristics and absorbing properties of multi-walled carbon nanotubes filled with Er2O3 nanoparticles as microwave absorbers, Materials Science and Engineering B, 153(3), 81(2008)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.