Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (4): 406-410    
  研究论文 本期目录 | 过刊浏览 |
NiCrW--BN气路封严涂层的可刮削性评价
刘夙伟, 刘阳, 李曙, 高禩洋, 王鹏
中国科学院金属研究所 沈阳 110016
Abradability Evaluation of NiCrW–BN Gas Path Seal Coating
LIU Suwei, GAO Siyang, LI Shu, LIU Yang, WANG Peng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

刘夙伟 刘阳 李曙 高禩洋 王鹏. NiCrW--BN气路封严涂层的可刮削性评价[J]. 材料研究学报, 2010, 24(4): 406-410.
, , , , . Abradability Evaluation of NiCrW–BN Gas Path Seal Coating[J]. Chin J Mater Res, 2010, 24(4): 406-410.

全文: PDF(748 KB)  
摘要: 

用销--盘、单摆冲击划痕和高速刮擦三种试验方法, 研究了两种NiCrW--BN封严涂层的可刮削性。结果表明: 封严涂层的可刮削性不同于耐磨性, 即涂层的磨损量、比能耗和硬度等测量结果, 不能单独作为其可刮削性的评价判据; 评价封严涂层的可刮削性, 应该综合涂层磨损、叶片磨损、摩擦系数和磨痕形貌等多方面的信息。封严涂层的可刮削性能受试验条件的影响十分明显, 高速刮擦试验可模拟涂层工作参数(刮擦线速度、入侵速率等), 可能重现其磨损现象, 因此采用高速刮擦试验方法评价封严涂层的可刮削性更为合理。

关键词 复合材料  可刮削性  高速刮擦法  封严涂层  可刮削    
Abstract

The abradability of two NiCrW–BN seal coatings processed by different heat treatments were observed by pin–disk, single–pass scratching, and high–speed wear tests. The results show that seal coating abradability is different from its wear– resistance, i.e. measuring of wear loss, wear–resistance, specific energy consumption and hardness, can not be used as abradability criterion. Coating abradability evaluation should be composed of extensive information, such as coating and blade wear loss, friction coefficient, wear topography. Seal coating abradability is obviously influenced by test condition, while high–speed rubbing test can simulate working variables of seal coating, such as rub linear speed, incursion velocity, probably reproduce its wear phenomena. Therefore the adoption of high–speed test to evaluate seal coating abradability is more reasonable.

Key wordscomposites     abradability     high–speed rubbing test     seal coating     abradable
收稿日期: 2010-04-09     
ZTFLH: 

TG174

 
基金资助:

国家自然科学基金50675215资助项目。

[1] J. T. DeMasi-marcin, D. K. Gupta, Protective coatings in the gas turbine engine, Surface & Coatings Technology, 68-69(1-3), 1 (1994) [2] LIU Suwei, LI Shu, LIU Yang, Seal coating and evaluation of its abradability, China Surface Engineering, 22(1), 12(2009) (刘夙伟, 李曙, 刘阳, 封严涂层材料及其可刮削性的评价, 中国表面工程, 22(1), 12(2009) [3] A. F. Emery, J. Wolak, S. Etemad, S. R. Choi, An experimental investigationof temperatures due to rubbing at the blade–seal interface in an aircraft compressor, Wear, 91(2) , 117(1983) [4] M. O. Borel, A. R. Nicoll, H. W. Sch?pfer, R. K. Schmid, The wear mechanisms occurring in abradable seals of gas turbines, Surface & Coatings Technology, 39-40(1-3), 117(1989) [5] D. E. Chappel, L. Vo, H. W. Howe, in: The International Gas Turbine & Aeroengine Congress & Exhibition, Gas path blade tip seals: abradable seal material testing at utility gas and steam turbine operating conditions(New Orleans, USA, ASME, 2001)p.1 [6] K. Hajmrle, P. Fiala, A. P. Chilkowich, L. T. Shiembob, in: ASME Turbo Expo.(vol. 4), Abradable seals for gas turbines and other rotary equipment(Vienna, Australia, ASME, 2004) p.673 [7] F. E. Kennedy, N. P. Hine, Single-pass rub testing of abradable seal materials, Journal of the ASLE, 38(9): 557(1982) [8] Y. N. Liang, S. Z. Li, S. Li, Evaluation of abradability of porous seal materials in a single pendulum scratch device, Wear, , 177(2), 167(1994) [9] R. C. Bill, L. P. Ludwig, Wear of seal materials used in aircraft propulsion system, Wear, , 59(1), 165(1980 [10] W. F. Laverty, Rub energetics of compressor blade tip seals, Wear, 75(1), 1 (1982) [11] E. Novinski, J. Harrington, J. Klein, Modified zirconia abradable seal coating for high temperature gas turbine applications, Thin Solid Films, 95, 255(1982) [12] YI Maozhong, ZHANG Xianlong, HU Naisai, HE Jiawen, Abradability evaluation of seal coating by impact-scraping test machine, Acta Aeronautica et Astronautica Sinica, 20(3), 249(1999) (易茂中, 张先龙, 胡奈赛, 何家文, 冲击刮削法评价封严涂层的可磨耗性, 航空学报, 20(3), 249(1999)) [13] M. Z. Yi, J. W. He, B. Y. Huang, H. J. Zhou. Friction and wear behavior and abradability of abradable seal coating, Wear, 231(1), 47(1999) [14] G. Barbezat, R. Clarke, A. R. Nicoll, in: Proceedings of the international symposium on tribology(Vol.2), The importance of tribology in the development and application of abradable plasma sprayed coatings for aircraft engines, edited by Y. S. Jin(Beijing, China, International Academic Publishers, 1993)p.756
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.