Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (4): 389-394    
  研究论文 本期目录 | 过刊浏览 |
GaN基SiTrO3薄膜的生长偏转模型和模拟研究
黄平1,2, 杨春1,3, 介伟伟1,2
1.四川师范大学可视化计算与虚拟现实四川省重点实验室 成都 610068 2.四川师范大学物理与电子工程学院 成都 610068   3.电子科技大学电子薄膜与集成器件国家重点实验室 成都610054  
First-principles Calculations for SrTiO3 Films Growth on GaN(0001) Surfaces
HUANG Ping1,2, YANG Chun1,3,  JIE Weiwei1,2,
1.Visual computing and virtual reality key laboratory of Sichuan province, Sichuan Normal University, Chengdu 610068
2.College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, 610068
3.State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chendu 610054
引用本文:

黄平 杨春 介伟伟. GaN基SiTrO3薄膜的生长偏转模型和模拟研究[J]. 材料研究学报, 2010, 24(4): 389-394.
, , . First-principles Calculations for SrTiO3 Films Growth on GaN(0001) Surfaces[J]. Chin J Mater Res, 2010, 24(4): 389-394.

全文: PDF(771 KB)  
摘要: 

构建了SrTiO3(STO)薄膜在GaN基底(0001)表面沿不同方向偏转10o、20o、30o、40o和50o具有不同界面结构的生长模型, 采用基于密度泛函理论的平面波超软赝势法对GaN(0001)表面外延生长不同方向的STO进行了总能量模拟计算。结果表明, 在晶格失配小的理想外延方向即[1--10]SrTiO3//[10--10]GaN的能量最高, 结构不稳定; 而随着STO[1--10]沿GaN[10--10]方向角度的偏转, 能量迅速降低, 偏转角度为30o时能量最低, 即外延关系为[1--10]SrTiO3 //[11--20]GaN时最稳定, 与实验结果一致。能量计算结果表明, STO/GaN磁电薄膜有利于形成STO--Ti--GaN的界面结构。

关键词 材料表面与界面  偏转模型  密度泛函理论  STO/GaN磁电薄膜    
Abstract

10?#20?#30?#40? and 50? in-plane rotation models of SrTiO3 (STO) films on GaN(0001)  substrates with different interface structure were designed. The total energies of different epitaxial models of STO/GaN magnetoelectric films were theoretically explored by the plane wave ultra soft pseudo-potential model based on density functional theory. The simulated results show that STO films grown on GaN (0001) substrates with the ideal (with the lowest lattice mismatch) epitaxial relation of [1–10]SrTiO3//[10–10]GaN have the highest energy, indicating this unstable configuration. The total energies become lower quickly with the rotation of STO[1–10] along GaN[10–10] direction, showing the lowest energy at the 30? rotation, which are the most stable structures. The epitaxial orientation relations are [1–10]SrTiO3//[11–20] GaN by this 30? rotation in the in-plane direction of the STO epilayer on GaN(0001) substrates, which are in agreement with experimental observation. Calculation results also reveal that the STO/GaN magnetelectric film is favor in forming STO-Ti-GaN interface structure.

Key wordssurface and interface in the materials     rotation models     DFT     STO/GaN magnetoelectric films
收稿日期: 2010-03-25     
ZTFLH: 

O484

 
基金资助:

国家自然科学基金50942025和电子薄膜与集成器件国家重点实验室开放课题KFJJ200811资助项目。

[1] C.J.Youn, T.S.Jeong , M.S.Han, J.W.Yang, K.Y.Lim, and H.W.Yu, Influence of various activation temperatures on the optical degradation of Mg doped InGaN/GaN MQW blue LEDs, J Cryst.Growth, 250, 331(2003) [2] T.U.shii, Y.Tazoh, and S.Miyazawa, LiGaO2 Single Crystal for a substrate of Hexagonal GaN thin films, Appl. Phys. Lett, 67, 1868(1995) [3] P.J.Hansen, L.Shen, Y.Wu, A.Stonas, Y.Terao, S.Heikman, D.Buttari, T.R.Jaylor, S.P.DenBaars, U.K.Mishra, R.A.York, and J.S.Speck, AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium titanate, J.Vac.Sci.Technol.B., 22(5), 2479(2004) [4] S.Y.Yang, Q.Zhan, P.L.Yang, M.P.Cruz, Y.H.Chu, R.Ramesh, Y.R.Wu, J.Singh, W.Tian, and D.G.Schlom, Capacitance-voltage characteristics of BiFeO3/SrTiO3/GaN heteroepitaxial structures, Appl. Phys.Lett., 91, 022909(2007) [5] W.Tian, V.Vaithyanathan, D.G.Schlom, Q.Zhan, S.Y.Yang, Y.H.Chu, and R.Ramesh, Epitaxial integration of (0001) BiFeO3 with (0001) GaN, Appl. Phys.Lett., 90(17), 172908(2007) [6]C.R.Cho, J.Y.Hwang, J.P.Kim, S.Y.Jeong, M.S.Jang, W.J.Lee, and D.H.Kim, Ferromagnetism of Heteroepitaxial Zn1-xCuxO films Grown on n-GaN Substrates, Jpn. J.Appl.Phys., 43, L1383(2004) [7]T.Sakai, T.Watanabr, H.Funaknbo, K.Saito, and M.Osada, Effect of La substitution on Electrical Properties of Hihgly Oriented Bi4Ti3O12 Films Prepurced by Metal organic Chemical Vapor Deposition, Jpn. J.Appl.Phys., 42, 166(2003) [8] A.Posadas, J.-B.Yau, C.H.Ahn, J.Han, S.Gariglio, K.Johnson, K.M.Rabe, and J.B.Neaton, Epitaxial Growth of Multiferroic YMnO3 on GaN, Applied Physics Letters, 87, 171915 (2005) [9] W. P. Li, R. Zhang, Y. G. Zhou, J. Yin, H. M. Bu, Z. Y. Luo, B. Shen, Y. Shi, R. L. Jiang, S. L. Gu, Z. G. Liu, Y. D. Zheng, and Z. C. Huang, Studies of metal-ferroelectric-GaN structures, Applied Physics Letters, 75(16), 2416(1999) [10] F. Wang, V.Fuflyigin, and A. Osinsky, Electro-optic properties of oxide ferroelectrics grown on GaN/sapphire , J.Appl .Phys. 88, 1701(2000) [11]W.B.Luo, J.Zhu, H.Chen, X.P.Wang, Y.Zhang, and Y,R.Li, Improved crystalline properties of laser molecular beam epitaxy grown SrTiO3 by rutile TiO2 layer on hexagonal GaN, J.Appl .Phys., 106, 104120(2009) [12] J.Ohta, H.Fujioka, M.Kawano, and M.Oshima, Structural Properties of Group Ⅲ Nitrides Grown on SrTiO3(111) Substrates by Pulsed Laser Deposition, Phys. Stat. Sol C 0(1), 554(2002) [13] M.Bernasconi, G.LChiarotti, and E.Tosatti, Ab-initio calculations of structural and electronic properties of gallium solid-state phases, Phys. Rev. B., 1995, 52, 9988(1995) [14] B.Hammer, L. B.Hansen, and J. K.Norskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals, Phys. Rev. B., 59, 7413(1999) [15] M.-H.Tsai, O.F.Sankey, K.E.Schmidt, and T.S.T.Tsong, Electronic structures of plar and nonplar GaN surfaces, Materials Science and Engineering B88, 40(2002) [16] A.L.Rosa and J.Neugebauer, First-principles calculations of the structural and electronic properties of clean GaN(0001) surfaces, Phys.Rev.B, 73, 205346(2006) [17] Q.Sun, A.Selloni, T.H.Myers and W.A.Doolittle, Oxygen adsorption and incorporation at irradiated GaN(0001) and GaN(000-1) surfaces, Phys.Rev.B, 74, 195317(2006) [18] K.Rapcewicz, M.B.Nardelli and J.Bemholc, Theory of surface morphplogy of wurtzite GaN(0001) surfaces, Phy.Rev.B, 56, R12725(1997) [19] J.P.Perdew, J.A.Chevary, S.H.Vosko, K.A.Jackson, M.R.Pederson, D.J.Singh, and C.Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phy.Rew.B, 46, 6671(1992) [20] Segall M D, Lindan Philip J D, Probert M J, Pickard C.J, Hasnip P J, Clark S J, and Payne M C, First-principles simulation: Ideals, illustrations and the CASTEP code, J.Phys.Condens.Matter, 14(11), 2717 (2002) [21] Wang Pei-Yi, Yang Chun, Li Lai-Cai, and Li Yan-Rong, Theoretical study on the reaction mechanism Sr,Ti,O in early growth of SrTiO3 thin films, Acta Phys.in., 57(4), 2340 (王佩怡,杨春, 李来才, 李言荣, SrTiO3薄膜生长初期Sr、Ti、O原子分子反应机理的理论研究, 物理学报,57(4), 2340(2008))
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[15] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.