Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (8): 592-602    DOI: 10.11901/1005.3093.2024.376
  研究论文 本期目录 | 过刊浏览 |
9310钢热变形过程中的流动软化和应变硬化的竞争
李佳俊1, 徐勇2, 涂泽立1, 黄龙1, 魏科1, 董显娟1()
1.南昌航空大学材料科学与工程学院 南昌 330063
2.南昌航空大学民航(飞行)学院 南昌 330063
Competition between Flow Softening and Strain Hardening during Thermal Deformation of 9310 Steel
LI Jiajun1, XU Yong2, TU Zeli1, HUANG Long1, WEI Ke1, DONG Xianjuan1()
1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.School of Civil Aviation (Flight), Nanchang Hangkong University, Nanchang 330063, China
引用本文:

李佳俊, 徐勇, 涂泽立, 黄龙, 魏科, 董显娟. 9310钢热变形过程中的流动软化和应变硬化的竞争[J]. 材料研究学报, 2025, 39(8): 592-602.
Jiajun LI, Yong XU, Zeli TU, Long HUANG, Ke WEI, Xianjuan DONG. Competition between Flow Softening and Strain Hardening during Thermal Deformation of 9310 Steel[J]. Chinese Journal of Materials Research, 2025, 39(8): 592-602.

全文: PDF(17218 KB)   HTML
摘要: 

在变形温度为1000~1200 ℃、应变速率为0.01~50 s-1、压下量为70%的条件下,使用Gleeble-3800热模拟实验机进行9310钢的等温热压缩,根据其微观组织和应力-应变曲线研究了这种钢的大应变(0.7~1.2)流动软化和应变硬化及其竞争机制。结果表明:在不同的变形参数范围内,9310钢的流动软化和应变硬化受到各种因素的影响。在高温(1080~1200 ℃)变形时其微观组织演变以动态再结晶(DRX)为主,影响流动软化和应变硬化的主要因素是应变速率。在高应变速率(5~50 s-1)条件下影响其流动软化的主要因素是DRX;在应变速率(0.01~5 s-1)较低时影响其应变硬化的主要因素是碳化物(CrC)钉扎。在低温(1000~1080 ℃)下变形,应变速率和变形温度对流动软化和应变硬化的影响都较为显著。随着应变速率的提高和变形温度的降低,变形热效应的影响逐渐增大,应变硬化程度随之降低。在低温和低应变速率条件下其应变硬化与DRX晶粒的粗化有关;在低温、高应变速率条件下存在大量原始形变奥氏体晶粒,组织演变是动态回复(DRV),流动软化是变形热效应和DRV共同作用的结果。对变形后水冷组织的观察和EBSD分析结果表明,在水冷相变过程中DRX晶粒倾向于形成典型的马氏体多级结构,而原始形变奥氏体晶粒中较高的位错密度使这种结构受到破坏并使马氏体的形态混乱无序。

关键词 材料科学基础学科9310钢等温热压缩流动软化动态再结晶马氏体    
Abstract

The isothermal thermal compression behavior of 9310 steel was assessed via Gleeble-3800 thermal simulation testing machine by applied pressing force up to 70% of the maximum value, with a range of strain rate 0.01-50 s-1 at 1000-1200 oC, in terms of variation of the flow softening and strain hardening of 9310 steel by large strain (0.7-1.2). Then, the mechanism related with the competition of flow softening and strain hardening was clarified in combination with the microstructure evolution. The results show that the flow softening and strain hardening behavior of 9310 steels are affected by different factors in the range of different deformation parameters. When deformed within high temperature range (1080-1200 oC), the microstructure evolution is dominated by dynamic recrystallization (DRX), and the flow softening and strain hardening are mainly affected by the strain rate. The softening mechanism at high strain rate (5-50 s-1) is DRX; The pinning effect of carbides is the main hardening mechanism at low strain rate (0.01-5 s-1). When deformed within lower temperature range (1000-1080 oC), flow softening and strain hardening are significantly affected by strain rate and deformation temperature. With the increase of strain rate and the decrease of deformation temperature, the degree of strain hardening decreases gradually, and the influence of deformation thermal effect gradually increases. The hardening behavior by high strain rate at low temperature is related to the coarsening of DRX grains. There are a large number of original deformation austenite grains by high strain rate at low temperature, while the microstructure evolution is mainly dynamic recovery (DRV), and the flow softening is the result of the joint action of deformation heat effect and DRV. The observation of the deformed water-cooled structure and EBSD analysis showed that the DRX grains tended to form a typical martensite multi-level structure during the course water-cooling with phase transformation, however, which may be destroyed by the higher dislocation density in the original deformed austenite grains, thereby resulting in chaotic and disordered martensite morphology.

Key wordsbasic discipline of materials science    9310 steel    isothermal compression    flow softening    dynamic recrystallization    martensite
收稿日期: 2024-09-02     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(52465047);江西省自然科学基金(20224BAB204045);江西省自然科学基金(20232BAB204050);南昌航空大学研究生创新专项资金(2030009306114)
通讯作者: 董显娟,副教授,dxj3@163.com,研究方向为航空材料成形理论及技术
Corresponding author: DONG Xianjuan, Tel: 13397080873, E-mail: dxj3@163.com
作者简介: 李佳俊,男,2000年生,硕士生
CSiMnPSNiCrMoONBCu
0.110.220.610.0010.000 43.191.300.110.000 60.000 90.0010.02
表1  9310钢的成分
图1  9310钢的热压缩实验参数
图2  9310钢原始组织和XRD谱
图3  9310钢的应力-应变曲线
图4  在不同变形条件下9310钢的软化和硬化
图5  不同应变速率的应变硬化率(θ)与应变的关系
图6  应变硬化率(θ)与温度和应变速率关系的等值线图
图7  应变速率敏感性指数m与应变和应变速率的关系
图8  应变为1.2时不同变形条件下9310钢的温升和1200 ℃/50 s-1条件下的微观组织
图9  在1200 ℃不同应变速率条件下9310钢中的奥氏体组织和变形后的水冷马氏体组织
图10  马氏体组织多级结构示意图
图11  在1150 ℃/0.1 s-1变形条件下9310钢的EBSD处理图
图12  在1000 ℃不同应变速率条件下9310钢中的奥氏体组织和变形后的水冷马氏体组织
图13  在不同变形条件下9310钢的位错密度曲线
图14  应变为1.2不同变形温度下的平均Es值
[1] Zhou F Y, Li X Z. Fracture analysis of the components made of high strength and carburizing steel [J]. PTCA (Part A), 2003, 39(4): 206
[1] 周凤云, 李熙章. 高强度渗碳钢制构件的断裂分析 [J]. 理化检验-物理分册, 2003, 39(4): 206
[2] Cui Z Q, Zhang N F, Wang J, et al. High temperature compression deformation behavior of 9Mn27Al10Ni3Si low density steel [J]. Chin. J. Mater. Res., 2022, 36(12): 907
doi: 10.11901/1005.3093.2021.505
[2] 崔志强, 张宁飞, 王 婕 等. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制 [J]. 材料研究学报, 2022, 36(12): 907
doi: 10.11901/1005.3093.2021.505
[3] Xu J W, Zeng W D, Zhou D D, et al. Analysis of flow softening during hot deformation of Ti-17 alloy with the lamellar structure [J]. J. Alloy. Compd., 2018, 767: 285
[4] Wan P, Kang T, Li F, et al. Dynamic recrystallization behavior and microstructure evolution of low-density high-strength Fe-Mn-Al-C steel [J]. J. Mater. Res. Technol., 2021, 15: 1059
[5] Zhang J Q, Di H S, Wang X Y. Flow softening of 253 MA austenitic stainless steel during hot compression at higher strain rates [J]. Mater. Sci. Eng., 2016, 650A: 483
[6] Won J W, Suh B C, Jeong J S, et al. Tensile strain-hardening behavior and related deformation mechanisms of pure titanium at cryogenic temperature [J]. J. Mater. Res. Technol., 2023, 26: 1669
[7] Chen X, Chen H, Ma S M, et al. Insights into flow stress and work hardening behaviors of a precipitation hardening AlMgScZr alloy: experiments and modeling [J]. Int. J. Plast., 2024, 172: 103852
[8] Madivala M, Schwedt A, Wong S L, et al. Temperature dependent strain hardening and fracture behavior of TWIP steel [J]. Int. J. Plast., 2018, 104: 80
[9] Song J D, He W F, Luo S H, et al. Effects of laser shock peening on low temperature carburizing of AISI9310 gear steel [J]. China Surface Engineering, 2023, 36(6): 155
doi: 10.11933/j.issn.1007-9289.20221231004
[9] 宋靖东, 何卫锋, 罗思海 等. 激光冲击强化前处理对AISI9310齿轮钢低温渗碳的影响 [J]. 中国表面工程, 2023, 36(6): 155
doi: 10.11933/j.issn.1007-9289.20221231004
[10] Gao M L, Zeng R, Hu J H, et al. Further enhancement of surface mechanical properties of carburized 9310 steel by electropulsing-assisted ultrasonic surface rolling process [J]. Surf. Coat. Technol., 2024, 480: 130593
[11] Huang S Z, Li Y, Wang C X, et al. Constitutive equations of a high-strength carburizing steel during high temperature thermal deformation [J]. Trans. Mater. Heat Treat., 2014, 35(10): 210
[11] 黄顺喆, 厉 勇, 王春旭 等. 高强渗碳钢高温热变形的本构方程 [J]. 材料热处理学报, 2014, 35(10): 210
[12] Wang Y H, Luo S M, Dong X J, et al. Research on constitutive model of 9310 steel based on physical parameters and BP neural network [J]. J. Plast. Eng., 2024, 31(8): 117
[12] 王宇航, 罗拴谋, 董显娟 等. 基于物理参数和BP神经网络的9310钢本构模型研究 [J]. 塑性工程学报, 2024, 31(8): 117
[13] Deng W H, Wang J, Pu H, et al. Determination and analysis of CCT curve of 9310 steel [J]. Trans. Mater. Heat Treat., 2023, 44(7): 166
[13] 邓为豪, 王 杰, 蒲 欢 等. 9310钢的CCT曲线测定与分析 [J]. 材料热处理学报, 2023, 44(7): 166
[14] Chen X M, Lin Y C, Wen D X, et al. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation [J]. Mater. Des., 2014, 57(5): 568
[15] Kaibyshev R, Shipilova K, Musin F, et al. Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion [J]. Mater. Sci. Eng., 2005, 396A(1-2) : 341
[16] Liu K M, Jiang Z Y, Zhou H T, et al. Effect of heat treatment on the microstructure and properties of deformation-processed Cu-7Cr in situ composites [J]. J. Mater. Eng. Perform., 2015, 24: 4340
[17] Su L P, Liu H Y, Jing L, et al. Flow stress characteristics and microstructure evolution during hot compression of Nb-47Ti alloy [J]. J. Alloy. Compd., 2019, 797: 735
[18] Zhu Y C, Shao Z C, Luo Y Y, et al. Research on the relationship between the strain rate sensitivity exponent, strain hardening exponent and deformation parameters, grain size of Ti2AlNb titanium alloy [J]. Mater. Rep., 2023, 37: 21070259
[18] 朱艳春, 邵珠彩, 罗媛媛 等. Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究 [J]. 材料导报, 2023, 37: 21070259
[19] Zhou D Y, Gao H, Guo Y H, et al. High-temperature deformation behavior and microstructural characterization of Ti-35421 titanium alloy [J]. Materials, 2020, 13: 3623
[20] Park J M, Moon J, Bae J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy [J]. Mater. Sci. Eng., 2018, 719A: 155
[21] Soares G C, Gonzalez B M, de Arruda Santos L. Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels [J]. Mater. Sci. Eng., 2017, 684A: 577
[22] Sun J, Huang Z Y, Li J H, et al. Study on the critical condition and deformation mechanism of dynamic recrystallization of novel lightweight steel based on the work hardening rate [J]. Mater. Rep., 2022, 36(19): 21050251
[22] 孙 建, 黄贞益, 李景辉 等. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究 [J]. 材料导报, 2022, 36(19): 21050251
[23] Ahmed M, Savvakin D G, Ivasishin O M, et al. The effect of cooling rates on the microstructure and mechanical properties of thermo-mechanically processed Ti-Al-Mo-V-Cr-Fe alloys [J]. Mater. Sci. Eng., 2013, 576A: 167
[24] Stuwe H P, Les P. Strain rate sensitivity of flow stress at large strains [J]. Acta Mater., 1998, 46: 6375
[25] Luo J, Li M Q. Strain rate sensitivity and strain hardening exponent during the isothermal compression of Ti60 alloy [J]. Mater. Sci. Eng., 2012, 538A: 156
[26] Zhu Y C, Fan J X, Li Z L, et al. Study of strain rate sensitivity exponent and strain hardening exponent of typical titanium alloys [J]. Mater. Today Commun., 2022, 30: 103060
[27] Zhang D, Dong X J, Xu Y, et al. Effect of strain rate on softening mechanism of TB15 titanium alloy [J]. Chin. J. Nonferrous Met., 2023, 33(6): 1784
[27] 张 殿, 董显娟, 徐 勇 等. 应变速率对TB15钛合金软化机制的影响 [J]. 中国有色金属学报, 2023, 33(6): 1784
[28] Xiang Y, Xiang W, Yuan W H. Flow softening and microstructural evolution of near β titanium alloy Ti-55531 during hot compression deformation in the α+β region [J]. J. Alloy. Compd., 2023, 955: 170165
[29] Churyumov A Y, Khomutov M G, Solonin A N, et al. Hot deformation behaviour and fracture of 10CrMoWNb ferritic-martensitic steel [J]. Mater. Des., 2015, 74: 44
[30] Lu Y, Xie H B, Wang J, et al. Influence of hot compressive parameters on flow behaviour and microstructure evolution in a commercial medium carbon micro-alloyed spring steel [J]. J. Manuf. Proces., 2020, 58: 1171
[31] Kim Y M, Lee H, Kim N J. Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels [J]. Mater. Sci. Eng., 2008, 478A: 361
[32] Wang Q J, He Z E, Du Z Z, et al. Softening mechanisms and microstructure evolution of 42CrMo steel during hot compressive deformation [J]. J. Mater. Res. Technol., 2023, 23: 5152
[33] Ding X F, Liu W H, Huang H, et al. Precipitation behavior and mechanical properties of 7A62 aluminum alloy after thermal-magnetic aging [J]. Chin. J. Nonferrous Met., 2024, 34(3): 751
[33] 丁学锋, 刘文辉, 黄 浩 等. 7A62铝合金在热磁时效后的析出行为与力学性能 [J]. 中国有色金属学报, 2024, 34(3): 751
[34] Godfrey A, Cao W Q, Liu Q, et al. Stored energy, microstructure, and flow stress of deformed metals [J]. Metal. Mater. Trans., 2005, 36A: 2371
[35] Li D J, Feng Y R, Song S Y, et al. Influences of silicon on the work hardening behavior and hot deformation behavior of Fe-25wt%Mn-(Si, Al) TWIP steel [J]. J. Alloy. Compd., 2015, 618: 768
[1] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[2] 郝文俊, 敬和民, 席通, 杨春光, 杨柯. 奥氏体化温度对含铜高碳马氏体不锈钢的组织和性能的影响[J]. 材料研究学报, 2024, 38(2): 121-129.
[3] 孙建, 李景辉, 黄贞益, 章小峰, 王东生, 刘述庆. 一种低密度钢等温压缩时组织的演化和动态再结晶[J]. 材料研究学报, 2024, 38(10): 768-781.
[4] 向钰琳, 杨仁贤, 蔡欣, 胡小强, 李殿中. 稀土CeX20Co马氏体耐热钢蠕变性能的影响[J]. 材料研究学报, 2024, 38(10): 721-731.
[5] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[6] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[7] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[8] 于森, 陈乐利, 罗锐, 袁志钟, 王爽, 高佩, 程晓农. 高温合金GH4169的动态再结晶和组织演化机制[J]. 材料研究学报, 2023, 37(3): 211-218.
[9] 谭海兵, 臧健, 梁弼宁, 刘建荣, 王清江, 赵子博, 李文渊. 中温热处理对Ti65合金淬火组织及室温拉伸性能的影响[J]. 材料研究学报, 2023, 37(12): 881-888.
[10] 李峰, 汪建强, 陈慧琴, 孙明月, 徐斌, 刘朝晖. Si9Cr型铁素体/马氏体钢析出相和力学性能的影响[J]. 材料研究学报, 2023, 37(11): 818-826.
[11] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[12] 崔志强, 张宁飞, 王婕, 侯清宇, 黄贞益. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制[J]. 材料研究学报, 2022, 36(12): 907-918.
[13] 庞阳, 邹德宁, 李雨浓, 李苗苗, 闫星宇, 何婵. 氮对淬火-配分超级马氏体不锈钢组织和性能的影响[J]. 材料研究学报, 2022, 36(10): 786-792.
[14] 刘洋, 康锐, 冯小辉, 罗天骄, 李应举, 冯建广, 曹天慧, 黄秋燕, 杨院生. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能[J]. 材料研究学报, 2022, 36(1): 13-20.
[15] 刘超, 王鑫, 门月, 张浩宇, 张思倩, 周舸, 陈立佳, 刘海建. Ti-6Al-4V合金热压缩过程中的动态再结晶[J]. 材料研究学报, 2021, 35(8): 583-590.