材料研究学报, 2025, 39(8): 592-602 DOI: 10.11901/1005.3093.2024.376

研究论文

9310钢热变形过程中的流动软化和应变硬化的竞争

李佳俊1, 徐勇2, 涂泽立1, 黄龙1, 魏科1, 董显娟,1

1.南昌航空大学材料科学与工程学院 南昌 330063

2.南昌航空大学民航(飞行)学院 南昌 330063

Competition between Flow Softening and Strain Hardening during Thermal Deformation of 9310 Steel

LI Jiajun1, XU Yong2, TU Zeli1, HUANG Long1, WEI Ke1, DONG Xianjuan,1

1.School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China

2.School of Civil Aviation (Flight), Nanchang Hangkong University, Nanchang 330063, China

通讯作者: 董显娟,副教授,dxj3@163.com,研究方向为航空材料成形理论及技术

责任编辑: 黄青

收稿日期: 2024-09-02   修回日期: 2025-02-13  

基金资助: 国家自然科学基金(52465047)
江西省自然科学基金(20224BAB204045)
江西省自然科学基金(20232BAB204050)
南昌航空大学研究生创新专项资金(2030009306114)

Corresponding authors: DONG Xianjuan, Tel: 13397080873, E-mail:dxj3@163.com

Received: 2024-09-02   Revised: 2025-02-13  

Fund supported: National Natural Science Foundation of China(52465047)
Natural Science Foundation of Jiangxi Province(20224BAB204045)
Natural Science Foundation of Jiangxi Province(20232BAB204050)
Nanchang Hangkong University Graduate Innovation Special Fund Project(2030009306114)

作者简介 About authors

李佳俊,男,2000年生,硕士生

摘要

在变形温度为1000~1200 ℃、应变速率为0.01~50 s-1、压下量为70%的条件下,使用Gleeble-3800热模拟实验机进行9310钢的等温热压缩,根据其微观组织和应力-应变曲线研究了这种钢的大应变(0.7~1.2)流动软化和应变硬化及其竞争机制。结果表明:在不同的变形参数范围内,9310钢的流动软化和应变硬化受到各种因素的影响。在高温(1080~1200 ℃)变形时其微观组织演变以动态再结晶(DRX)为主,影响流动软化和应变硬化的主要因素是应变速率。在高应变速率(5~50 s-1)条件下影响其流动软化的主要因素是DRX;在应变速率(0.01~5 s-1)较低时影响其应变硬化的主要因素是碳化物(CrC)钉扎。在低温(1000~1080 ℃)下变形,应变速率和变形温度对流动软化和应变硬化的影响都较为显著。随着应变速率的提高和变形温度的降低,变形热效应的影响逐渐增大,应变硬化程度随之降低。在低温和低应变速率条件下其应变硬化与DRX晶粒的粗化有关;在低温、高应变速率条件下存在大量原始形变奥氏体晶粒,组织演变是动态回复(DRV),流动软化是变形热效应和DRV共同作用的结果。对变形后水冷组织的观察和EBSD分析结果表明,在水冷相变过程中DRX晶粒倾向于形成典型的马氏体多级结构,而原始形变奥氏体晶粒中较高的位错密度使这种结构受到破坏并使马氏体的形态混乱无序。

关键词: 材料科学基础学科; 9310钢; 等温热压缩; 流动软化; 动态再结晶; 马氏体

Abstract

The isothermal thermal compression behavior of 9310 steel was assessed via Gleeble-3800 thermal simulation testing machine by applied pressing force up to 70% of the maximum value, with a range of strain rate 0.01-50 s-1 at 1000-1200 oC, in terms of variation of the flow softening and strain hardening of 9310 steel by large strain (0.7-1.2). Then, the mechanism related with the competition of flow softening and strain hardening was clarified in combination with the microstructure evolution. The results show that the flow softening and strain hardening behavior of 9310 steels are affected by different factors in the range of different deformation parameters. When deformed within high temperature range (1080-1200 oC), the microstructure evolution is dominated by dynamic recrystallization (DRX), and the flow softening and strain hardening are mainly affected by the strain rate. The softening mechanism at high strain rate (5-50 s-1) is DRX; The pinning effect of carbides is the main hardening mechanism at low strain rate (0.01-5 s-1). When deformed within lower temperature range (1000-1080 oC), flow softening and strain hardening are significantly affected by strain rate and deformation temperature. With the increase of strain rate and the decrease of deformation temperature, the degree of strain hardening decreases gradually, and the influence of deformation thermal effect gradually increases. The hardening behavior by high strain rate at low temperature is related to the coarsening of DRX grains. There are a large number of original deformation austenite grains by high strain rate at low temperature, while the microstructure evolution is mainly dynamic recovery (DRV), and the flow softening is the result of the joint action of deformation heat effect and DRV. The observation of the deformed water-cooled structure and EBSD analysis showed that the DRX grains tended to form a typical martensite multi-level structure during the course water-cooling with phase transformation, however, which may be destroyed by the higher dislocation density in the original deformed austenite grains, thereby resulting in chaotic and disordered martensite morphology.

Keywords: basic discipline of materials science; 9310 steel; isothermal compression; flow softening; dynamic recrystallization; martensite

PDF (17218KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李佳俊, 徐勇, 涂泽立, 黄龙, 魏科, 董显娟. 9310钢热变形过程中的流动软化和应变硬化的竞争[J]. 材料研究学报, 2025, 39(8): 592-602 DOI:10.11901/1005.3093.2024.376

LI Jiajun, XU Yong, TU Zeli, HUANG Long, WEI Ke, DONG Xianjuan. Competition between Flow Softening and Strain Hardening during Thermal Deformation of 9310 Steel[J]. Chinese Journal of Materials Research, 2025, 39(8): 592-602 DOI:10.11901/1005.3093.2024.376

9310钢(高强度渗碳钢)具有良好的韧性和可焊性,可用于制造航空领域中的齿轮、齿轮轴和主旋翼轴等关键零件[1]。为了使9310钢具有优异的综合力学性能,进行热变形控制其微观组织。9310钢的热变形过程受到变形参数的影响,随着变形量的增大流动软化和应变硬化协同发生且相互竞争,同时发生复杂的微观组织演变(例如,动态回复DRV和动态再结晶DRX)和相变。这些因素都影响这种钢的流动软化和应变硬化,最终影响其力学性能[2]。因此,研究9310钢热变形过程中发生的流动软化和应变硬化的竞争及其机制至关重要。

材料的流动软化,能显著降低变形抗力、细化晶粒以及提高力学性能,对其机制的研究已成为热点。Xu等[3]研究了具有片层组织的Ti-17合金在热变形过程中的流动软化,发现片状α相的分离和球化影响流动软化。Wan等[4]根据流动应力曲线和微观组织研究了Fe-8.5Mn-1.5Al中锰钢的流动软化和再结晶机理,认为DRV和DRX是主要的软化机制。Zhang等[5]研究发现,高应变速率的变形热效应和流动失稳导致流动软化。与流动软化的机制相比,应变硬化的机制更加复杂。Won等[6]研究发现,随着变形温度从298 K降至100K纯Ti的拉伸应变硬化显著增大,延展性大大提高,棱柱状<a>滑移的激活和在100 K下显著增大的临界分切应力是其主要的硬化机制。Chen等[7]定量描述了析出物与位错的交互作用以及位错密度在变形过程中的演化,发现影响其应变硬化的机制是析出物。Madivala等[8]研究了高锰奥氏体孪生诱发塑性(TWIP)钢在123~773 K温度范围内的应变硬化,发现孪生和应变诱发的ε-马氏体相变是其应变硬化机制。目前对9310钢的研究主要集中在渗碳工艺和表面处理[9,10]。虽然有学者研究了这种钢的热变形,但是多数研究都是关于热变形过程中的本构方程[11,12]。本文进行9310钢的等温热压缩实验,根据其应力-应变曲线定量计算流动软化和应变硬化,根据应变硬化率θ和应变速率敏感性指数m分析流动软化和应变硬化,根据微观组织演变揭示其流动软化和应变硬化的机制。

1 实验方法

实验用锻态9310钢棒料的成分列于表1。用Gleeble-3800热模拟实验机进行9310钢的等温恒应变速率热压缩实验,圆棒试样的直径为8 mm长度为12 mm。图1给出了热压缩实验参数,实验温度范围为1000~1200 ℃,温度的间隔为50 ℃。应变速率分别为0.01、0.1、1、10、50 s-1。以5 ℃/s的速率将试样升温到实验温度,保温3 min后进行压缩,高度压下量为70% (真应变约为1.2),压缩结束后立即水冷至室温。

表1   9310钢的成分

Table 1  Chemical composition of 9310 steel (mass fraction, %)

CSiMnPSNiCrMoONBCu
0.110.220.610.0010.000 43.191.300.110.000 60.000 90.0010.02

新窗口打开| 下载CSV


图1

图1   9310钢的热压缩实验参数

Fig.1   Schematic diagram of the parameters of 9310 steel hot compression experiment


将压缩后的9310钢试样沿压缩方向的轴线将其线切割对半剖开。将一半镶嵌后打磨抛光制成金相试样,用体积分数为4%的硝酸酒精溶液将抛光后的试样腐蚀,以得到水冷后的组织。将另一半试样水浴加热至60~70 ℃,再用饱和苦味酸+少量海鸥洗剂灵溶液腐蚀,以显示高温下的奥氏体晶界,然后用XJP-6A型光学显微镜观察其微观组织。

用D8ADVANCE型X射线衍射仪测试试样的XRD谱,扫描速率为10(°)/min,扫描范围(2θ)为20°~80°,Cu靶射线,波长(λ)为0.15406 nm。将试样电解抛光后用装有Oxford Nordlys Max3 EBSD探头的ZEISS Sigma 500场发射扫描电子显微镜进行EBSD观察,步长为0.2 μm,加速电压为20 kV。

2 实验结果

2.1 原始试样的组织和物相

图2a给出了原始试样水冷后的组织,可见其由板条马氏体(Lath M)组成[13]图2b给出了试样的XRD谱,可见原始试样在1000 ℃条件下的衍射峰均只有两个,用Jade软件分析(鉴定)其为奥氏体(γ)相;温度升至1200 ℃时出现第三个衍射峰,对应的物相为CrC。

图2

图2   9310钢原始组织和XRD谱

Fig.2   Original microstructure and XRD pattern of 9310 steel (a) the original organization, (b) XRD patterns


2.2 9310钢的应力-应变曲线

应力-应变曲线是热变形过程中流动软化与应变硬化协同竞争的体现。图3给出了在不同变形条件下9310钢的应力-应变曲线,从图3a,b可见,在温度不变的条件下,随着应变速率的提高应力峰变宽,表明在低应变速率下更容易发生流动软化。从图3c可见,在低应变速率0.01 s-1下变形时,在变形初期流动应力迅速增大至峰值,是形变产生的位错的扩散和堆积引起的应变硬化所致[14]。随着应变的增大,DRV (动态回复)和DRX (动态再结晶)引起的流动软化降低了位错密度,使流动应力显著降低。流动软化与应变硬化达到动态平衡时,曲线出现稳态。应变量增大到大约0.4,流动应力又增大。由图3d可见,高应变速率(10 s-1)变形时流动应力先迅速增大然后缓慢增大,因为DRV和DRX抵消了部分应变硬化。随着应变增至大约0.7,流动应力又缓慢减小。

图3

图3   9310钢的应力-应变曲线

Fig.3   Stress-strain curve of 9310 steel (a) 1000 oC, (b) 1100 oC, (c) 0.01 s-1, (d) 10 s-1


图3还可以看出,9310钢在一定的温度变形,随着应变速率的提高流动应力增大。其原因是,应变速率的提高使位错增殖速率提高、变形时间缩短使DRV和DRX没有足够的时间,位错的湮灭速率远低于位错增殖速率,从而提高了位错密度和增大了流动应力[15]。在应变速率一定的条件下,随着变形温度的提高流动应力降低。其原因是:随着变形温度的提高原子的动能增大,使依赖原子间相互作用的临界剪切应力减小和点缺陷的扩散加快,使依赖于扩散的位错容易启动,从而减小了变形过程中产生的应变硬化[16,17]。另一方面,金属材料的变形是金属原子之间金属键的断裂和结合。变形温度越高则原子的能量越高,越容易挣脱金属键的束缚而使材料处于软化状态,从而使流动应力减小[18]

2.3 流动软化和应变硬化

2.3.1 软化和硬化程度 可用

FSRR=σ0.7-σSσ0.7×100%

量化流动软化和应变硬化的程度。式中σ0.7为应变为0.7时的流动应力,σS 为终止应力,即应变为1.2的流动应力。为了便于区分,将硬化程度的数值取正,将软化程度的数值取负。

使用 式(1)的计算结果在图4中给出。可以看出,在不同的变形温度范围内流动软化和应变硬化的程度显著不同。这种不同来源于热变形过程中流动软化与应变硬化的协同竞争。变形温度为1080~1200 ℃时,流动软化与应变硬化之间竞争主要受应变速率影响。应变速率为0.01~5 s-1时的变形属于应变硬化区(Ⅰ区),硬化程度为0%~34%。随着应变速率的降低和变形温度的提高硬化程度提高,最大值为34%;应变速率为5~50 s-1时的变形为流动软化区(Ⅱ区),软化程度的变化不大(为0%~6%)。变形温度为1000~1080 ℃时,在低温、低应变速率(1080 ℃、0.01 s-1)条件下变形出现应变硬化(Ⅲ区),硬化程度的最大值为22%。随着应变速率的提高和变形温度的降低,应变硬化程度降低而流动软化程度提高。在高应变速率范围内(10 s-1)出现流动软化区(Ⅳ区),软化程度的最大值为9%。

图4

图4   在不同变形条件下9310钢的软化和硬化

Fig.4   Softening and hardening of 9310 steel under different deformation conditions


2.3.2 应变硬化率 应变硬化率

θ=dσdε

是在一定应变速率和变形温度条件下钢应力-应变曲线的斜率[19],可用于分析应变硬化与流动软化之间的关系。 式(2)中σ为流动应力,ε为应变。θ为正值意味着流动应力随着应变的增大而增大,表示发生的是应变硬化。θ为负值,表示发生的是流动软化。

图5a给出了应变速率为0.01 s-1时应变硬化率(θ)与应变的关系。由图5a可见,随着应变的增大θ先迅速减小而后缓慢减小到0点以下,到达最低点后又增大到0点以上。这表明,变形开始发生弹塑性转变[20];在DRV的作用下位错发生滑动和攀移,使θ变缓减小;然后由亚结构排列形成的小角度晶界逐渐转变为大角度晶界,生成了DRX晶粒,使θ减小到0点以下(应变为0.1~0.2);随着变形的进行应变硬化逐渐增大,抵消了流动软化而使θ增大到0点以上(应变为0.2~0.4),应变硬化又占主导(应变大于0.4)。而产生应变硬化的机制,与位错、应变场以及晶体结构中障碍物的相互作用有关。例如,应变诱导相或孪晶界,这些障碍通过变形引入结构中并降低了位错迁移率[21]图5b给出了应变速率为10 s-1时应变硬化率(θ)与应变的关系。如图5b所示,θ随着应变量的增大迅速减小后缓慢减小,在应变大于0.7后减小到负值。其原因是,在变形的初始阶段(应变小于0.1)螺型位错通过交叉滑移绕过障碍,位错的抵消使其密度降低而θ随之迅速减小。然后,在0.1~0.7应变范围内位错胞壁变长形成具有软化作用的亚晶界,应变硬化越来越弱使θ的减小变缓[22]。与低应变速率的微观机制不同,高应变率的DRV时间太短,不能限制边界迁移的时间而延迟了通过亚晶粒聚集和应变诱导边界迁移的DRX成核[23]。应变达到0.7后DRX晶粒开始长大,流动软化逐渐占据主导而使θ减小为负值。应变增大到0.7,流动软化才开始占据主导。应变硬化与应变软化之间持续的动态竞争,使应变为0.9~1.2时出现显著的波动。

图5

图5   不同应变速率的应变硬化率(θ)与应变的关系

Fig.5   Relationship curves between strain hardening rate (θ) and strain at different strain rates (a) ε˙ = 0.01 s-1, (b) ε˙ = 10 s-1


图6给出了应变硬化率(θ)随温度和应变速率变化的等值线图。从图6a可以看出,应变为0.7时θ为负值的区域较小,表明其流动软化并不明显,主要发生的是应变硬化。随着变形的进行,应变为0.9时θ为负值的区域位于应变速率为10 s-1附近(图6b)。随着应变增大到1.1(图6c)流动软化的范围进一步增大,其最大值出现在低温高应变速率处(1000 ℃和50 s-1)。在1080~1200 ℃和高应变速率(5~50 s-1)条件下变形θ几乎全部变为负值,表明发生了流动软化。而变形温度为1000~1080 ℃时,在应变速率和变形温度的共同影响下θ为负值的区域向低温、低应变速率的方向扩展。

图6

图6   应变硬化率(θ)与温度和应变速率关系的等值线图

Fig.6   Contour plot of strain hardening rate (θ) as a function of temperature and strain rate (a) ε = 0.7, (b) ε = 0.9, (c) ε = 1.1


2.3.3 应变速率敏感性指数

在不同条件下变形,其应变速率敏感性指数为[18]

m=dlgσdlgε˙ε, T

式中σ为流动应力(MPa),ε˙为应变速率(s-1),ε为应变,T为变形温度(℃)。

图7给出了应变速率敏感性指数m与应变和应变速率的关系。由图7a可以看出,变形温度为1150 ℃、应变速率分别为0.01、0.1、1 s-1时,随着应变的增大m值减小。其原因是,位错的增殖、累积和相互作用使应变硬化占主导。随着应变速率提高到10 s-1,变形热效应的增强抵消了部分应变硬化,使应变小于0.9时的m值保持稳定。应变大于0.9后,热软化引起的位错湮灭速率比位错增殖速率更低,位错密度的提高产生应力集中,材料的塑性流动能力降低而使m值显著降低[24]。随着应变速率的提高变形热效应进一步增强,应变速率达到50 s-1时流动软化超过了应变硬化而使m值缓慢增大。同时,变形热引起的晶粒长大使应变达到1.1时m值减小。总之,控制m值随应变变化的机制有:微观组织演变、与位错湮灭有关的流动软化以及位错积累和位错相互作用引起的应变硬化[25]图7b给出了应变速率敏感性指数m与应变速率的关系。可以看出,随着应变速率的提高,m先增大后减小然后再增大。应变速率为0.01、0.1 s-1时变形时间较长,使材料的DRX时间足够长,在此变形条件下m值较大。应变速率达到1、10 s-1时变形时间缩短,位错不能及时消耗而使储能较高,位错的扩散不能充分进行而阻碍了再结晶晶粒的形核,从而使m值减小。随着应变速率提高到50 s-1,变形热效应使m值再次增大。同时,m随着变形温度的提高而增大,因为变形温度的提高使材料中原子的平均动能增加,晶体产生滑移的临界切向应力的降低促进了位错滑移和晶界扩散,从而使m值增大[26]

图7

图7   应变速率敏感性指数m与应变和应变速率的关系

Fig.7   Relationship between strain rate sensitivity index m and strain and strain rate (a) T = 1150 oC, (b) ε = 1.2


3 讨论

3.1 变形热效应的影响

上述分析结果表明,流动软化与应变硬化的协同竞争变形机制不同。

在材料的热变形过程中,随着变形量的增大其微观组织随之发生变化。变形过程中的大部分塑性变形功转化为热能,小部分储存在材料中。同时,变形速率过高使热变形产生的变形热在短时间内难以散出,因此对流动软化的影响较大。可用温升

ΔT=0.95ηρc0εσdε

定量表征变形热效应。式中ρ为材料密度(g/cm3);c为材料比热容(J/(g·K));σ为流动应力(MPa);ε为应变;

η=0, ε˙0.001 s-10.316lg ε˙+0.95, 0.001 s-1<ε˙<1 s-10.95, ε˙1 s-1

为热转化率[28]

图8a给出了应变为1.2时不同变形条件下9310钢的温升(ΔT)。可以看出,与变形温度相比,ΔT对应变速率更为敏感。在低应变速率下变形其变形热效应较小,对流动软化的影响可以忽略。随着应变速率的提高ΔT显著增大,使其微观组织发生较大的变化。如图8b所示,在高应变速率下变形后微观组织的不均匀性较为严重,局部晶粒明显粗化。其原因是,局部温升(ΔT约为30 ℃)使其发生热软化,使热压缩过程中的流动应力随着应变的增大而减小,变形集中在局部产生局部流动而引起失稳。

图8

图8   应变为1.2时不同变形条件下9310钢的温升和1200 ℃/50 s-1条件下的微观组织

Fig.8   Microstructure diagram of temperature rise value of 9310 steel under different deformation conditions and 1200 oC/50 s-1 parameters under strain 1.2 (a) temperature rise under different deformation conditions, (b) microstructure at 1200 oC/50 s-1 parameters


3.2 微观组织的演变

图9a~c给出了变形温度为1200 ℃时应变速率不同9310钢的奥氏体组织。可以看出,应变速率为0.01 s-1时(图9a),在高温下DRX晶粒长大。其原因是,DRX是一种热激活的扩散控制过程,在很大程度上取决于原子扩散速率、晶界或亚晶界迁移以及位错运动[29]。变形温度的提高有利于晶界迁移,从而促进晶粒长大。同时,变形温度为1200 ℃时Cr与C原子发生反应生成CrC相。但是,在1200 ℃的高温下只有较少的CrC相,其粗化和球化产生的软化效应可以忽略。第二相的产生降低了位错迁移率,使晶粒之间的晶界逐渐“分离”而阻碍了再结晶形核。这导致大应变下的流动软化减弱,而使应变硬化占主导。与应变速率为0.01 s-1时的变形相比,应变速率为1 s-1时DRX晶粒更加细小(图9b),平均尺寸约为10 μm,此时变形热效应的增强使应变硬化程度降低了25%。随着应变速率提高到10 s-1 (图9c),与低温段不同的是,高温段的DRX晶粒取代了原始奥氏体晶粒。其原因是,应变速率较高时较大的形核驱动力为DRX的形核提供了足够的动力[30],较高的变形温度也促进了晶界迁移。DRX的发生消耗储存能和产生无位错晶粒,产生了显著的流动软化,而变形热的贡献小得多。因此,在高温、高应变速率下变形的流动软化,主要是DRX所致。

图9

图9   在1200 ℃不同应变速率条件下9310钢中的奥氏体组织和变形后的水冷马氏体组织

Fig.9   Austenite microstructure and water-cooled martensitic microstructure of 9310 steel at different strain rates at 1200 oC (a, d) 1200 oC/0.01 s-1, (b, e) 1200 oC/1 s-1, (c, f) 1200 oC/10 s-1


热变形影响水冷后的组织和相变动力学,因为在变形过程中形成的亚结构在快冷条件下保持到相变温度[31]。Lu等[30]研究发现,形变奥氏体中的高密度位错有利于针状铁素体的形核,而DRX晶粒更倾向于生成片状贝氏体或马氏体。图9d~f给出了变形后的水冷马氏体组织。可见马氏体包边界和马氏体块边界,马氏体块边界沿着某一方向规则排列。这表明,高温变形后水冷马氏体组织具有多级结构。

图10给出了典型的马氏体组织多级结构示意图。图11给出了在1150 ℃/0.1 s-1条件下变形的9310钢试样的EBSD观察结果,也识别出了马氏体组织的多级结构。这表明,DRX晶粒的生成使变形后的水冷组织倾向于形成典型的马氏体多级结构[32]

图10

图10   马氏体组织多级结构示意图

Fig.10   Schematic diagram of the multi-level structure of martensitic structure


图11

图11   在1150 ℃/0.1 s-1变形条件下9310钢的EBSD处理图

Fig.11   EBSD treatment of 9310 steel under 1150 oC/0.1 s-1 deformation (a) GB+BC figure, (b) IPF diagrams


图12a~c给出了变形温度为1000 ℃应变速率不同的9310钢的奥氏体组织。可以看出,在低应变速率0.01 s-1下变形时(图12a),较长的变形时间使DRX晶粒逐渐粗化,使晶界处位错聚集的可能性降低和再结晶形核位置减少,流动软化的竞争力不足使应变硬化占据主导。应变速率为10 s-1时(图12b),局部的高储能使原始奥氏体晶界附近的位错密度提高和DRX晶粒形核,在应变大于0.7后长大。但是,较短的变形时间限制了DRX行为。应变速率达到50 s-1使变形时间进一步缩短,使微观组织的大部分是原始奥氏体晶粒且存在晶界弓出现象,许多细小的DRX晶粒沿着原始奥氏体晶界成核生长,尺寸约为2~4 μm (图12c)。这表明,在此温度区间内高应变速率变形后的微观组织演变以DRV为主,对流动软化有一定的影响。同时,在低温、高应变速率条件下ΔT最高可达49.6 ℃。因此,在低温、高应变速率条件下变形的流动软化是变形热和DRV共同作用的结果。

图12

图12   在1000 ℃不同应变速率条件下9310钢中的奥氏体组织和变形后的水冷马氏体组织

Fig.12   Austenite microstructure and water-cooled martensitic microstructure of 9310 steel at different strain rates at 1000 oC (a, d) 1000 oC/0.01 s-1, (b, e) 1000 oC/10 s-1, (c, f) 1000 oC/50 s-1


图12d~f给出了变形后的水冷马氏体组织。由图12d可见,应变速率为0.01 s-1的组织中也出现了马氏体的多级结构,因为其微观组织以DRX为主。高应变速率(10 s-1和50 s-1)变形后的组织如图12e、f所示,可见马氏体形态混乱无序,马氏体块的排列也较为随机。其原因是,高应变速率变形后的组织中大量的原始奥氏体晶粒中有密度较高的位错,这些位错破坏了马氏体的多级结构。

3.3 流动软化与应变硬化协同竞争机制

根据XRD谱(图2b)计算原始试样、在1000 ℃/0.01 s-1和1200 ℃/0.01 s-1条件下变形后的位错密度ρ[33],并根据

β2tan2θ=λDβtanθsinθ+25ε2

的计算结果进行线性拟合,由拟合直线的斜率和截距计算出平均晶粒尺寸D和有效微应变ε。式中的θ为衍射峰对应的入射角;λ为Cu靶衍射目标的波长(0.15406 nm);β为衍射峰半高宽;ε为有效微应变平方的平均值;D为平均晶粒尺寸。

Dε代入

ρ=23ε212Db

可计算出位错密度。式中 b 为伯氏矢量,低合金钢一般取0.248 nm。

位错密度ρ的计算结果在图13中给出。未变形的原始试样中的位错密度为0.328 × 1014 m-2。变形条件为1000 ℃/0.01 s-1时,随着应变的增大位错不能及时被DRX消耗,加剧了位错之间的交错、缠结,位错密度的提高使其运动困难。同时,变形热效应和微观组织演变产生的流动软化较弱,从而使应变硬化占主导。随着变形温度提高到1200 ℃,碳化物(CrC)的析出产生的钉扎严重阻碍晶界迁移并提高了晶界附近的位错密度,使其由0.480 × 1014 m-2提高到0.671 × 1014 m-2,应变硬化程度也由14%提高到34%。

图13

图13   在不同变形条件下9310钢的位错密度曲线

Fig.13   Corresponding dislocation density curves of 9310 steel under different deformation conditions


同时,在塑性变形的过程中位错的形变储能为EsEs值受位错密度的影响,还与位错边界的间距和晶粒取向差密切相关。Es间接反映奥氏体相的状态。变形后微观结构中单位体积的存储能可表示为[34]

Es=12ρGb2

式中ρ为变形奥氏体的总位错密度,G为剪切模量(高温下G为4 × 104 MPa), b 为伯氏矢量。流动应力与位错密度之间的经验关系为[35]

σ-σ0=MαGbρ

其中σ为流动应力,σ0为摩擦应力(大应变下,σ>>σ0σ0可忽略不计),M为Taylor因子(FCC晶体的Taylor因子取2.86),α为常数(0.2~0.3)。将 式(8)和 式(9)结合,存储能量Es可表示为流动应力σ的函数

Es=12Gσ-σ0Mα2

根据应变为1.2的流动应力可计算出不同变形温度下的平均Es值,结果在图14中给出。由图14可见,低温段(1000~1080 ℃)的平均Es值高于高温段(1080~1200 ℃)的值。其原因是,在低温、高应变速率条件下变形后微观组织的演变以DRV为主,晶粒取向差多为小角度,无法消耗形变储能Es,因此平均Es值较大,容易形成局部Es强化,在水冷相变过程中使马氏体形态受到破坏。而在变形温度的高温段亚晶界更容易转动合并增大与相邻亚晶之间的取向差,从而生成DRX晶粒。大量DRX的发生消耗Es并产生显著软化效应,促进水冷相变后马氏体多级结构的产生。

图14

图14   应变为1.2不同变形温度下的平均Es

Fig.14   Average Es values at different deformation temperatures under strain 1.2


4 结论

(1) 9310钢高温(1080~1200 ℃)变形后的微观组织演变以动态再结晶(DRX)为主,流动软化和应变硬化主要受应变速率的影响。高应变速率(5~50 s-1)变形的流动软化机制为DRX;低应变速率(0.01~5 s-1)变形的应变硬化机制是碳化物(CrC)的钉扎。

(2) 9310钢在低温(1000~1080 ℃)变形时的流动软化和应变硬化受应变速率和变形温度的影响较为显著。随着应变速率的增大和变形温度的降低应变硬化程度随之降低,变形热效应的影响逐渐增大。低温、低应变速率条件下的应变硬化与DRX晶粒的粗化有关;在低温、高应变速率条件下变形后存在大量原始形变奥氏体晶粒,其组织演变主要是动态回复(DRV),流动软化是变形热效应和DRV共同作用的结果。

(3) DRX的发生消耗形变储能Es,水冷相变促进马氏体多级结构的形成。原始形变奥氏体组织容易产生局部Es强化,水冷相变破坏马氏体的形态。

参考文献

Zhou F Y, Li X Z.

Fracture analysis of the components made of high strength and carburizing steel

[J]. PTCA (Part A), 2003, 39(4): 206

[本文引用: 1]

周凤云, 李熙章.

高强度渗碳钢制构件的断裂分析

[J]. 理化检验-物理分册, 2003, 39(4): 206

[本文引用: 1]

Cui Z Q, Zhang N F, Wang J, et al.

High temperature compression deformation behavior of 9Mn27Al10Ni3Si low density steel

[J]. Chin. J. Mater. Res., 2022, 36(12): 907

DOI      [本文引用: 1]

The deformation characteristics of 9Mn27Al10Ni3Si low density steel at 850~1050℃ with strain rate within the range of 0.01~5 s-1 were investigated by using Gleeble thermal simulator, XRD, OM, SEM and TEM. The results show that when the steel is hot compressed at 850~950℃ with low strain rate (0.01~1 s-1), the flow stress of the steel increases obviously as the strain reaches a certain critical value, which may be due to the precipitation and coarsening of κ-carbides, and the increase of friction coefficient of the steel during hot compression. With the increase of strain rate, the number of twins increases significantly, which can speed up the process of dynamic recrystallization of austenite, however, during thermal compression by high strain rate, the dynamic recrystallization process is more significant rather than by low strain rate. Due to the softening effect of recrystallization, the abnormal rise of flow stress gradually weakens or even disappears.

崔志强, 张宁飞, 王 婕 .

9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制

[J]. 材料研究学报, 2022, 36(12): 907

DOI      [本文引用: 1]

使用Gleeble热模拟试验机、XRD、OM、SEM和TEM等手段研究了9Mn27Al10Ni3Si低密度钢在850~1050℃和0.01~5 s<sup>-1</sup>条件下的热压缩变形特征及其机制。结果表明,对这种钢在850~950℃进行低应变速率(0.01~1 s<sup>-1</sup>)热压缩时,κ-碳化物的析出和粗化以及在热压缩过程中摩擦系数的增大使其应变达到临界值后流变应力明显增大;随着应变速率的提高,实验钢的孪生显著增强,显著加快了奥氏体的动态再结晶过程,使其在高应变速率热压缩时动态再结晶的程度比低应变速率压缩时更为显著。再结晶的软化作用,使上述流变应力异常增大的现象逐渐减弱甚至消失。

Xu J W, Zeng W D, Zhou D D, et al.

Analysis of flow softening during hot deformation of Ti-17 alloy with the lamellar structure

[J]. J. Alloy. Compd., 2018, 767: 285

[本文引用: 1]

Wan P, Kang T, Li F, et al.

Dynamic recrystallization behavior and microstructure evolution of low-density high-strength Fe-Mn-Al-C steel

[J]. J. Mater. Res. Technol., 2021, 15: 1059

[本文引用: 1]

Zhang J Q, Di H S, Wang X Y.

Flow softening of 253 MA austenitic stainless steel during hot compression at higher strain rates

[J]. Mater. Sci. Eng., 2016, 650A: 483

[本文引用: 1]

Won J W, Suh B C, Jeong J S, et al.

Tensile strain-hardening behavior and related deformation mechanisms of pure titanium at cryogenic temperature

[J]. J. Mater. Res. Technol., 2023, 26: 1669

[本文引用: 1]

Chen X, Chen H, Ma S M, et al.

Insights into flow stress and work hardening behaviors of a precipitation hardening AlMgScZr alloy: experiments and modeling

[J]. Int. J. Plast., 2024, 172: 103852

[本文引用: 1]

Madivala M, Schwedt A, Wong S L, et al.

Temperature dependent strain hardening and fracture behavior of TWIP steel

[J]. Int. J. Plast., 2018, 104: 80

[本文引用: 1]

Song J D, He W F, Luo S H, et al.

Effects of laser shock peening on low temperature carburizing of AISI9310 gear steel

[J]. China Surface Engineering, 2023, 36(6): 155

DOI      [本文引用: 1]

AISI 9310 steel is a kind of high-strength carburized steel with good toughness. Owing to its material properties, this steel is usually used to fabricate gear parts. Gear tooth surface is prone to wear and contact fatigue damage during service processing. Therefore, to effectively resolve the resistance properties and for the synergistic strengthening of the wear and contact fatigue properties, the AISI 9310 steel sample was processed by laser shock peening (LSP) and then treated by low temperature gaseous carburization (LC). The carburized layer and cross-sectional crystallographic characteristics were imaged using optical microscopy (OM), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD); subsequently, the cross-sectional hardness was measured. The following results were obtained. After LC treatment, a white carburized layer, which was approximately 14-μm thick and uneven, was induced on the 9310 steel matrix surface. The maximum hardness achieved for the carburized layer of 9310 steel was about 305.67 HV with the depth of work hardening being 300 μm. The maximum hardness of the LCed sample was enhanced by 27.56% compared to the as-received sample. However, with pre-LSP treatment, the thickness of the carburized layer of 9310 steel was improved to approximately 23 μm and the maximum hardness to approximately 328.87 HV with the depth of work hardening being 700 μm. The maximum hardness of the LSP-LCed sample was enhanced by 5.46 % compared to the LCed sample. However, in comparison, the pre-LSP treatment improves the thickness of the carburized layer by 64.3%, the maximum hardness by 23.17 HV, and the depth of work hardening by 133%. The underlying reasons for these enhancements are as follows. Generally, LSP treatment induces plastic deformation and improves the proportion of low angle grain boundary (LGB); this enhances the diffusion behavior of the carbon atoms, and consequently improves the hardness of the LCed layer and the depth of work hardening. After pre-LSP treatment, the carbon diffusion behavior and hardness of LC were enhanced. Specifically, combining pre-LSP and LC processing results in cross-sectional work hardening because LC alone can hardly influence the Kernel average misorientation (KAM) and proportion of LGB of as-received 9310 steel. In other words, pre-LSP improves the KAM of the LCed sample by 15.38% (from 0.52° to 0.60°), and the depth from 0-100 μm. Moreover, pre-LSP enhances the KAM of the LCed sample by 15.79 % (to 0.66°) and the depth from 100-200 μm. Finally, the low angle grain boundary was measured. Notably, LC does not affect the proportion of the low angle grain boundary and the cross-sectional distribution for 9310 steel. On the contrary, pre-LSP processing evidently enhances the proportion of the low angle grain boundary. At the depth of 0-100 μm, pre-LSP enhances the total proportion of the LGB of the LCed sample by 13.04% (from 36.8% to 41.6%). Moreover, the total proportions of the LGB of the LCed sample were enhanced from 36.8% to 55.8% and from 38% to 46.2% for the depth ranging from 100-200 μm and 200-300 μm, respectively. Based on the above results, the main conclusions to enhance the carbon atoms diffusion behavior are as follows. Pre-LSP enhances the carbon diffusion behavior of LC by inducing plastic deformation via increased KAM and increasing the proportion of low-angle grain boundary. Consequently, the easier carbon diffusion behavior of LC could induce the thicker carburized layer, the harder work hardening level, and even improves the thickness of work hardening layer. The problem of carbon diffusion enhanced by microstructure defects induced by LSP pretreatment is preliminarily solved. This resolution would provide technical support for LSP compound strengthening to extend the service life of key components of aviation gear.

宋靖东, 何卫锋, 罗思海 .

激光冲击强化前处理对AISI9310齿轮钢低温渗碳的影响

[J]. 中国表面工程, 2023, 36(6): 155

DOI      [本文引用: 1]

AISI 9310 钢是一种高强度渗碳齿轮钢,具有较好的韧性。服役过程中,齿面极易发生磨损和接触疲劳失效损伤。为有效改善 9310 齿轮钢的耐磨损和抗接触疲劳性能,实现磨损和接触疲劳性能协同强化,提出采用激光冲击(LSP)+渗碳(LC) 复合强化的技术思路,采用激光冲击强化技术对 AISI 9310 钢基体进行前处理,再对其开展低温渗碳热处理。为进一步研究 LSP 和 LC 对 9310 齿轮钢微观组织形貌的影响规律,利用光学显微镜、扫描电子显微镜和电子背散射衍射表征渗碳层微观组织形貌和截面方向的晶体学特征,并对试件截面方向的硬度进行考核。研究结果表明,AISI 9310 钢的渗碳层厚度约为 14 μm, 最大硬度约为 305.67 HV,硬化层厚度约 300 μm;LSP 前处理后,渗碳层厚度提升到 23 μm,最大硬度提升到 328.87HV,硬化层厚度提升到约 700 μm。对比发现,LSP 前处理分别可将 9310 钢低温渗碳层厚度提升 64.3%,渗碳层硬度提升 23.17 HV, 硬化层深度提升 133%。这主要是低温渗碳对 9310 钢的 Kernel 平均取向差(KAM)和小角度晶界影响较小,但是 LSP 前处理可引入塑性变形并提升小角度晶界比例,有助于碳元素扩散,促进 9310 钢低温渗碳行为,提升渗碳层厚度、硬化层硬度和厚度。初步解决了 LSP 前处理诱导微观组织缺陷促进碳元素扩散的问题,可为 LSP 复合强化提升航空齿轮关键部件服役寿命提供技术支撑。

Gao M L, Zeng R, Hu J H, et al.

Further enhancement of surface mechanical properties of carburized 9310 steel by electropulsing-assisted ultrasonic surface rolling process

[J]. Surf. Coat. Technol., 2024, 480: 130593

[本文引用: 1]

Huang S Z, Li Y, Wang C X, et al.

Constitutive equations of a high-strength carburizing steel during high temperature thermal deformation

[J]. Trans. Mater. Heat Treat., 2014, 35(10): 210

[本文引用: 1]

黄顺喆, 厉 勇, 王春旭 .

高强渗碳钢高温热变形的本构方程

[J]. 材料热处理学报, 2014, 35(10): 210

[本文引用: 1]

Wang Y H, Luo S M, Dong X J, et al.

Research on constitutive model of 9310 steel based on physical parameters and BP neural network

[J]. J. Plast. Eng., 2024, 31(8): 117

[本文引用: 1]

王宇航, 罗拴谋, 董显娟 .

基于物理参数和BP神经网络的9310钢本构模型研究

[J]. 塑性工程学报, 2024, 31(8): 117

[本文引用: 1]

Deng W H, Wang J, Pu H, et al.

Determination and analysis of CCT curve of 9310 steel

[J]. Trans. Mater. Heat Treat., 2023, 44(7): 166

[本文引用: 1]

邓为豪, 王 杰, 蒲 欢 .

9310钢的CCT曲线测定与分析

[J]. 材料热处理学报, 2023, 44(7): 166

[本文引用: 1]

Chen X M, Lin Y C, Wen D X, et al.

Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation

[J]. Mater. Des., 2014, 57(5): 568

[本文引用: 1]

Kaibyshev R, Shipilova K, Musin F, et al.

Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion

[J]. Mater. Sci. Eng., 2005, 396A(1-2) : 341

[本文引用: 1]

Liu K M, Jiang Z Y, Zhou H T, et al.

Effect of heat treatment on the microstructure and properties of deformation-processed Cu-7Cr in situ composites

[J]. J. Mater. Eng. Perform., 2015, 24: 4340

[本文引用: 1]

Su L P, Liu H Y, Jing L, et al.

Flow stress characteristics and microstructure evolution during hot compression of Nb-47Ti alloy

[J]. J. Alloy. Compd., 2019, 797: 735

[本文引用: 1]

Zhu Y C, Shao Z C, Luo Y Y, et al.

Research on the relationship between the strain rate sensitivity exponent, strain hardening exponent and deformation parameters, grain size of Ti2AlNb titanium alloy

[J]. Mater. Rep., 2023, 37: 21070259

[本文引用: 2]

朱艳春, 邵珠彩, 罗媛媛 .

Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究

[J]. 材料导报, 2023, 37: 21070259

[本文引用: 2]

Zhou D Y, Gao H, Guo Y H, et al.

High-temperature deformation behavior and microstructural characterization of Ti-35421 titanium alloy

[J]. Materials, 2020, 13: 3623

[本文引用: 1]

Park J M, Moon J, Bae J W, et al.

Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy

[J]. Mater. Sci. Eng., 2018, 719A: 155

[本文引用: 1]

Soares G C, Gonzalez B M, de Arruda Santos L.

Strain hardening behavior and microstructural evolution during plastic deformation of dual phase, non-grain oriented electrical and AISI 304 steels

[J]. Mater. Sci. Eng., 2017, 684A: 577

[本文引用: 1]

Sun J, Huang Z Y, Li J H, et al.

Study on the critical condition and deformation mechanism of dynamic recrystallization of novel lightweight steel based on the work hardening rate

[J]. Mater. Rep., 2022, 36(19): 21050251

[本文引用: 1]

孙 建, 黄贞益, 李景辉 .

基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究

[J]. 材料导报, 2022, 36(19): 21050251

[本文引用: 1]

Ahmed M, Savvakin D G, Ivasishin O M, et al.

The effect of cooling rates on the microstructure and mechanical properties of thermo-mechanically processed Ti-Al-Mo-V-Cr-Fe alloys

[J]. Mater. Sci. Eng., 2013, 576A: 167

[本文引用: 1]

Stuwe H P, Les P.

Strain rate sensitivity of flow stress at large strains

[J]. Acta Mater., 1998, 46: 6375

[本文引用: 1]

Luo J, Li M Q.

Strain rate sensitivity and strain hardening exponent during the isothermal compression of Ti60 alloy

[J]. Mater. Sci. Eng., 2012, 538A: 156

[本文引用: 1]

Zhu Y C, Fan J X, Li Z L, et al.

Study of strain rate sensitivity exponent and strain hardening exponent of typical titanium alloys

[J]. Mater. Today Commun., 2022, 30: 103060

[本文引用: 1]

Zhang D, Dong X J, Xu Y, et al.

Effect of strain rate on softening mechanism of TB15 titanium alloy

[J]. Chin. J. Nonferrous Met., 2023, 33(6): 1784

张 殿, 董显娟, 徐 勇 .

应变速率对TB15钛合金软化机制的影响

[J]. 中国有色金属学报, 2023, 33(6): 1784

Xiang Y, Xiang W, Yuan W H.

Flow softening and microstructural evolution of near β titanium alloy Ti-55531 during hot compression deformation in the α+β region

[J]. J. Alloy. Compd., 2023, 955: 170165

[本文引用: 1]

Churyumov A Y, Khomutov M G, Solonin A N, et al.

Hot deformation behaviour and fracture of 10CrMoWNb ferritic-martensitic steel

[J]. Mater. Des., 2015, 74: 44

[本文引用: 1]

Lu Y, Xie H B, Wang J, et al.

Influence of hot compressive parameters on flow behaviour and microstructure evolution in a commercial medium carbon micro-alloyed spring steel

[J]. J. Manuf. Proces., 2020, 58: 1171

[本文引用: 2]

Kim Y M, Lee H, Kim N J.

Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels

[J]. Mater. Sci. Eng., 2008, 478A: 361

[本文引用: 1]

Wang Q J, He Z E, Du Z Z, et al.

Softening mechanisms and microstructure evolution of 42CrMo steel during hot compressive deformation

[J]. J. Mater. Res. Technol., 2023, 23: 5152

[本文引用: 1]

Ding X F, Liu W H, Huang H, et al.

Precipitation behavior and mechanical properties of 7A62 aluminum alloy after thermal-magnetic aging

[J]. Chin. J. Nonferrous Met., 2024, 34(3): 751

[本文引用: 1]

丁学锋, 刘文辉, 黄 浩 .

7A62铝合金在热磁时效后的析出行为与力学性能

[J]. 中国有色金属学报, 2024, 34(3): 751

[本文引用: 1]

Godfrey A, Cao W Q, Liu Q, et al.

Stored energy, microstructure, and flow stress of deformed metals

[J]. Metal. Mater. Trans., 2005, 36A: 2371

[本文引用: 1]

Li D J, Feng Y R, Song S Y, et al.

Influences of silicon on the work hardening behavior and hot deformation behavior of Fe-25wt%Mn-(Si, Al) TWIP steel

[J]. J. Alloy. Compd., 2015, 618: 768

[本文引用: 1]

/