Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (5): 353-361    DOI: 10.11901/1005.3093.2024.330
  研究论文 本期目录 | 过刊浏览 |
FeCoCrNiMn/6061铝基复合材料的组织性能
胡勇(), 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛
华东交通大学材料科学与工程学院 南昌 330013
Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites
HU Yong(), LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao
School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
引用本文:

胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
Yong HU, Shifeng LU, Tao YANG, Chunwang PAN, Lincheng LIU, Longzhi ZHAO, Yanchuan TANG, Dejia LIU, Haitao JIAO. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites[J]. Chinese Journal of Materials Research, 2025, 39(5): 353-361.

全文: PDF(13004 KB)   HTML
摘要: 

用真空热压烧结工艺制备了FeCoCrNiMn/6061铝基复合材料,使用扫描电子显微镜(SEM)、能谱分析(EDS)、XRD谱和万能试验机等手段表征其微观组织和力学性能,研究了FeCoCrNiMn 颗粒对其性能的影响。结果表明:这种复合材料中的FeCoCrNiMn颗粒与6061铝合金基体界面结合良好,界面结合处有厚度约为0.5 μm的扩散层。随着FeCoCrNiMn 颗粒体积分数的提高材料的布氏硬度、屈服强度和抗拉强度随之提高,延伸率降低。FeCoCrNiMn颗粒体积分数为20%的材料,其屈服强度和抗拉强度分别为137.53 MPa、186.00 MPa,比6061铝合金分别提高了71.12%和24.41%。FeCoCrNiMn/6061铝基复合材料的强化机制,是热膨胀系数错配强化、细晶强化和载荷转移强化,其中热膨胀系数错配强化的贡献最大。

关键词 复合材料FeCoCrNiMn颗粒铝基复合材料热压烧结微观组织力学性能    
Abstract

Novel composites of FeCoCrNiMn particle reinforced 6061 Al-alloy matrix (FeCoCrNiMn/6061 Al-alloy)were prepared by vacuum hot-pressing sintering technique. The microstructure of the composites was studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The mechanical properties of the composites were measured by universal testing machine. The results indicate that the interface between FeCoCrNiMn particles and the 6061 Al-alloy matrix is well bonded, with a diffusion layer of approximately 0.5 μm at the interface. With the increase of the volume fraction of FeCoCrNiMn particles, the Brinell hardness, yield strength and tensile strength of the composites increase gradually, while the elongation at break decreases gradually. When the volume fraction of FeCoCrNiMn particles is 20%, the yield strength and tensile strength reach 137.53 MPa and 186.00 MPa, respectively, which are 71.12% and 24.41% higher than 6061 Al-alloy. The strengthening mechanisms of FeCoCrNiMn/6061 Al-alloy matrix composites may mainly be thermal mismatch strengthening, fine-grain strengthening and load transfer strengthening, among which the thermal mismatch strengthening contributes the most.

Key wordscomposite    FeCoCrNiMn particles    aluminum matrix composites    hot press sintering    microstructure    mechanical property
收稿日期: 2024-07-27     
ZTFLH:  TB331  
基金资助:国家自然科学基金(51865011);江西省自然科学基金(20224BAB214048)
通讯作者: 胡勇,教授,huyong@ecjtu.edu.cn,研究方向为金属及其复合材料
Corresponding author: HU Yong, Tel: 13576012078, E-mail: huyong@ecjtu.edu.cn
作者简介: 胡 勇,男,1982年生,博士
图1  6061、FeCoCrNiMn 和FeCoCrNiMn + 6061粉末的形貌
Volume fraction of FeCoCrNiMn particles0%4%8%12%16%20%
ρt / g·cm-32.722.9353.153.3663.5813.796
ρa / g·cm-32.6772.8813.0763.2843.4713.669
表1  FeCoCrNiMn/6061铝基复合材料的实际密度和理论密度
图2  FeCoCrNiMn /6061铝基复合材料的致密度
图3  FeCoCrNiMn/6061铝基复合材料的显微组织
图4  FeCoCrNiMn/6061铝基复合材料的晶粒尺寸分布
图5  6061铝合金和其体积分数为12%的FeCoCrNiMn/6061铝基复合材料的XRD谱
图6  FeCoCrNiMn/6061铝基复合材料元素的EDS分析
图7  FeCoCrNiMn/6061铝基复合材料的界面层EDS线扫描分析
图8  FeCoCrNiMn/6061铝基复合材料的布氏硬度
图9  FeCoCrNiMn/6061铝基复合材料的拉伸应力-应变曲线
图10  FeCoCrNiMn/6061铝基复合材料的拉伸断口形貌
图11  各种强化机制对FeCoCrNiMn/6061铝基复合材料屈服强度的贡献
图12  FeCoCrNiMn/6061铝基复合材料的屈服强度预测曲线和实验值
1 Garg P, Jamwal A, Kumar D, et al. Advance research progresses in aluminium matrix composites: manufacturing & applications [J]. J. Mater. Res. Technol., 2019, 8(5): 4924
2 Suthar J, Patel K M. Processing issues, machining, and applications of aluminum metal matrix composites [J]. Mater. Manuf. Process., 2017, 33(5): 499
3 Zhao Y F, Tian Z Y, Chen Z M, et al. Research progress in mechanical properties of AlN reinforced aluminum matrix composites [J]. J. Mater. Eng., 2023, 51(12): 24
doi: 10.11868/j.issn.1001-4381.2022.001005
3 赵永峰, 田泽源, 陈宗民 等. AlN增强铝基复合材料力学性能研究进展 [J]. 材料工程, 2023, 51(12): 24
doi: 10.11868/j.issn.1001-4381.2022.001005
4 Zhang L, Yang L, Leng J, et al. Alloying behavior and properties of Al-based composites reinforced with Al85Fe15 metallic glass particles fabricated by mechanical alloying and hot pressing consolidation [J]. JOM, 2017, 69(4): 748
5 Hu J, Wu G, Zhang Q, et al. Damping capacity of the Al matrix composite reinforced with SiC particle and TiNi fiber [J]. Sci. Eng. Compos. Mater., 2016, 23(2): 179
6 Xiang Z B, Nie J H, Wei S H, et al. Effects of particle-matrix matching on strengthening mechanism of particle reinforced Al matrix composites [J]. Chin. J. Mater. Res., 2015, 29(10): 744
doi: 10.11901/1005.3093.2014.591
6 向兆兵, 聂俊辉, 魏少华 等. 增强颗粒与基体适配性对颗粒增强铝基复合材料强化机理的影响 [J]. 材料研究学报, 2015, 29(10): 744
doi: 10.11901/1005.3093.2014.591
7 Ye T, Xu Y, Ren J. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite [J]. Mater. Sci. Eng. A, 2019, 753: 146
8 Wang H M, Su W X, Liu J Q, et al. Microstructure and properties of FeCoNiCrMn and Al2O3 hybrid particle-reinforced aluminum matrix composites fabricated by microwave sintering [J]. J. Mater. Res. Technol., 2023, 24: 8618
9 Farid W, Bah T A, Kong C, et al. A novel way to fabricate high elastic modulus and high strength of TiC reinforced aluminum matrix composite [J]. Mater. Manuf. Process., 2023, 38(14): 1785
10 Liu R F, Wang W X, Zhao W. Microstructure and mechanical properties of micro/nano B4C particle reinforced 6061Al matrix composites [J]. Acta Mater. Compo. Sin., 2021, 38(10): 3394
10 刘瑞峰, 王文先, 赵 威. 微/纳B4C增强6061Al复合材料微观结构及力学性能 [J]. 复合材料学报, 2021, 38(10): 3394
11 Zhuang W, Yang H, Yang W, et al. Microstructure, tensile properties, and wear resistance of in situ TiB2/6061 composites prepared by high energy ball milling and stir casting [J]. J. Mater. Eng. Perform., 2021, 30(10): 7730
12 Li Q, Bao X, Zhao S, et al. The influence of AlFeNiCrCoTi high-entropy alloy on microstructure, mechanical properties and tribological behaviors of aluminum matrix composites [J]. Int. J. Metalcast., 2020, 15(1): 281
13 Li J, Nie J, Xu Q, et al. Enhanced mechanical properties of a novel heat resistant Al-based composite reinforced by the combination of nano-aluminides and submicron TiN particles [J]. Mater. Sci. Eng. A, 2020, 770: 138488
14 Duan M G, Li C, Li B, et al. Study on the high cycle fatigue properties of in-situ TiB2/7050 composite [J]. Acta Mater. Compo. Sin., 2023, 40(11): 6430
14 段敏鸽, 李 晨, 李 彪 等. 原位自生TiB2/7050铝基复合材料高周疲劳特性 [J]. 复合材料学报, 2023, 40(11): 6430
15 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
16 Kareem S A, Anaele J U, Aikulola E O, et al. Aluminium matrix composites reinforced with high entropy alloys: A comprehensive review on interfacial reactions, mechanical, corrosion, and tribological characteristics [J]. J. Mater. Res. Technol., 2024, 30: 8161
17 Yang X, Liang Z, Wang L W, et al. Interface structure and tensile behavior of high entropy alloy particles reinforced Al matrix composites by spark plasma sintering [J]. Mater. Sci. Eng. A, 2022, 860: 144273
18 Wang P J, Ai T T, Liao Z N, et al. Microstructure and mechanical properties of high-entropy alloys (FeNiCoCr)100 - x Al x (x = 0, 5) prepared by hot-pressing sintering [J]. Chin. J. Mater. Res., 2022, 36(11): 871
18 王沛锦, 艾桃桃, 廖仲尼 等. 热压烧结(FeNiCoCr)100 - x Al x (x = 0, 5)高熵合金的微观组织及力学性能 [J]. 材料研究学报, 2022, 36(11): 871
doi: 10.11901/1005.3093.2021.383
19 He Y Q, Su Q H, Huan C B, et al. Preparation and properties of AlFeNiCrCoTi0.5 high entropy alloy particle reinforced 6061 aluminum matrix composites [J]. J. Mater. Eng., 2023, 51(3): 67
19 贺毅强, 苏前航, 郇昌宝 等. AlFeNiCrCoTi0.5高熵合金颗粒增强6061铝基复合材料的制备与性能 [J]. 材料工程, 2023, 51(3): 67
doi: 10.11868/j.issn.1001-4381.2021.001181
20 Yang X, Zhang H, Dong P, et al. A study on the formation of multiple intermetallic compounds of friction stir processed high entropy alloy particles reinforced Al matrix composites [J]. Mater. Charact., 2022, 183: 111646
21 Lu T, He T, Li Z, et al. Microstructure, mechanical properties and machinability of particulate reinforced Al matrix composites: a comparative study between SiC particles and high-entropy alloy particles [J]. J. Mater. Res. Technol, 2020, 9(6): 13646
22 Luo K, Lei G, Liu S, et al. Mechanical properties and microstructure evolution of cryorolled AlCoCrFeNi-reinforced aluminum matrix composites tensile tested at room and cryogenic temperatures [J]. Metall. Mater. Trans. A, 2023, 54(6): 2292
23 Zhang Y, Luo K, Lei G, et al. Interfacial characteristics and enhanced mechanical properties of Al0.5CoCrFeNi high-entropy alloy particles reinforced Al matrix composites [J]. Metall. Mater. Trans. A, 2022, 53(12): 4161
24 Soorya Prakash K, Gopal P M, Purusothaman M, et al. Fabrication and characterization of metal-high entropy alloy composites [J]. Int. J. Metalcast., 2019, 14(2): 547
25 Gao J, Wang X, Zhang S, et al. Producing of FeCoNiCrAl high-entropy alloy reinforced Al composites via friction stir processing technology [J]. Int. J. Adv. Manuf. Tech., 2020, 110(1-2): 569
26 Li P, Tong Y, Wang X, et al. Microstructures and mechanical properties of AlCoCrFeNi2.1/6061-T6 aluminum-matrix composites prepared by friction stir processing [J]. Mater. Sci. Eng. A, 2023, 863: 144544
27 Yuan Z, Tian W, Li F, et al. Microstructure and properties of high-entropy alloy reinforced aluminum matrix composites by spark plasma sintering [J]. J. Alloy. Compd., 2019, 806: 901
28 Liu Y, Chen J, Li Z, et al. Formation of transition layer and its effect on mechanical properties of AlCoCrFeNi high-entropy alloy/Al composites [J]. J. Alloy. Compd., 2019, 780: 558
29 Liu Y, Chen J, Wang X, et al. Significantly improving strength and plasticity of Al-based composites by in-situ formed AlCoCrFeNi core-shell structure [J]. J. Mater. Res. Technol., 2021, 15: 4117
30 Wang Y, Chen Y, Xie J, et al. High entropy alloy reinforced aluminum matrix composites prepared by novel rotation friction extrusion process: Microstructure and mechanical properties [J]. Mater. Sci. Eng. A, 2022, 854: 143789
31 Yuan Z, Tian W, Li F, et al. Effect of heat treatment on the interface of high-entropy alloy particles reinforced aluminum matrix composites [J]. J. Alloy. Compd., 2020, 822: 153658
32 Cheng H, Xie Y, Tang Q, et al. Microstructure and mechanical properties of FeCoCrNiMn high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering [J]. Trans. Nonferrous Met. Soc. China, 2018, 28(7): 1360
33 Ding F J, Jia X D, Hong T J, et al. Influence of different heat treatment processes on plasticity and hardness of 6061 aluminum alloy [J]. Mater. Rev., 2021, 35(08): 8108-8115+8120
33 丁凤娟, 贾向东, 洪腾蛟 等. 不同热处理工艺对6061铝合金塑性和硬度的影响 [J]. 材料导报, 2021, 35(08): 8108-8115+8120
34 Han P, Wang W, Liu Z, et al. Modification of cold-sprayed high-entropy alloy particles reinforced aluminum matrix composites via friction stir processing [J]. J. Alloy. Compd., 2022, 907: 164426
35 Wan B, Lu T, Xu X, et al. Achieving high strength and ductility in high-entropy alloy particle reinforced Al matrix composites with proper proportion of layered structures [J]. Mater. Charact., 2023, 205: 113354
36 Luo K, Liu S, Xiong H, et al. Mechanical properties and strengthening mechanism of aluminum matrix composites reinforced by high-entropy alloy particles [J]. Met. Mater. Int., 2022, 28(11): 2811
37 Zhang Y, Li X, Gu H, et al. Insight of high-entropy alloy particles-reinforced 2219 Al matrix composites via the ultrasonic casting technology [J]. Mater. Charact., 2021, 182: 111548
38 Tao R, Zhao Y T, Chen G, et al. Microstructure and properties of in-situ ZrB2 np/AA6111 composites synthesized under an electromagnetic field [J]. Acta Metall. Sin., 2019, 55(1): 160
38 陶 然, 赵玉涛, 陈 刚 等. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究 [J]. 金属学报, 2019, 55(1): 160
[1] 刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
[2] 符纯国, 徐世伟, 杨晓益, 李萌蘖. 焊接热源模式对5083-H111铝合金接头性能的影响[J]. 材料研究学报, 2025, 39(4): 305-313.
[3] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
[4] 孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.
[5] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[6] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.
[7] 唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.
[8] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[9] 包秀坤, 史桂梅. NiCo@C(N)/NC纳米复合物的制备及其吸波性能[J]. 材料研究学报, 2025, 39(2): 126-136.
[10] 朱国豪, 陈平, 徐计雷, 孙慧敏. 低聚聚酰亚胺(SPI)改性的聚酰亚胺(PI)固化物的制备和性能[J]. 材料研究学报, 2025, 39(2): 103-112.
[11] 王娜, 李文彬, 庞建超, 陈立佳, 高崇, 邹成路, 张辉, 李守新, 张哲峰. 增材制造高温合金在不同温度下的拉伸性能与变形机制[J]. 材料研究学报, 2025, 39(1): 1-10.
[12] 韩珩, 李洪峤, 李鹏, 马国政, 郭伟玲, 刘明. 冷喷涂温度对Ni-Ti3AlC2复合涂层摩擦学性能的影响[J]. 材料研究学报, 2025, 39(1): 44-54.
[13] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[14] 崔捷, 李旭东, 杜宪, 李淑波, 杜文博. 轧制温度对Mg-4Zn-1Mn-1.2Ce合金板材微观组织及力学/导热性能的影响[J]. 材料研究学报, 2024, 38(9): 641-650.
[15] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.