Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (5): 343-352    DOI: 10.11901/1005.3093.2024.211
  研究论文 本期目录 | 过刊浏览 |
第一壁自钝化W-Cr-Zr合金的氧化行为和氧化层结构
吴玉程1,2(), 左彤1, 谭晓月1,2, 朱晓勇1,2, 刘家琴3,4
1.合肥工业大学材料科学与工程学院 合肥 230009
2.有色金属材料与加工国家地方工程研究中心 合肥 230009
3.合肥工业大学工业与装备研究院 合肥 230009
4.安徽省先进复合材料设计与应用工程中心 合肥 230051
Oxidation Behavior of Self-passivated W-Cr-Zr Alloys as the First Wall Candidate Material
WU Yucheng1,2(), ZUO Tong1, TAN Xiaoyue1,2, ZHU Xiaoyong1,2, LIU Jiaqin3,4
1.School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2.National-Local Joint Research Center of Nonferrous Metals and Processing Technology, Hefei 230009, China
3.Institute of Industry and Equipment, Hefei University of Technology, Hefei 230009, China
4.Anhui Advanced Composite Material Design and Application Engineering Center, Hefei 230051, China
引用本文:

吴玉程, 左彤, 谭晓月, 朱晓勇, 刘家琴. 第一壁自钝化W-Cr-Zr合金的氧化行为和氧化层结构[J]. 材料研究学报, 2025, 39(5): 343-352.
Yucheng WU, Tong ZUO, Xiaoyue TAN, Xiaoyong ZHU, Jiaqin LIU. Oxidation Behavior of Self-passivated W-Cr-Zr Alloys as the First Wall Candidate Material[J]. Chinese Journal of Materials Research, 2025, 39(5): 343-352.

全文: PDF(24613 KB)   HTML
摘要: 

用3D激光测量显微镜、扫描电子显微镜(SEM)和X射线衍射仪(XRD)等手段表征自钝化W-Cr-Zr合金氧化前后表面的粗糙度、形貌和物相组成,研究了氧化层结构对其后续氧化行为的影响。结果表明,自钝化W-Cr-Zr合金氧化后表面的粗糙度越大表明其在氧化初期生成的氧化层裂纹越多。在后续的氧化过程中裂纹作为氧与基体接触的通道,使基体的氧化加速,从而使其线性氧化速率提高。W-Cr-Zr合金氧化后生成的氧化层最表面是高温稳定的Cr2WO6,亚表层是易升华的WO2.83。除去氧化层中的Cr2WO6层后,在后续的氧化过程中基体的严重氧化和WO2.83的迅速升华仍生成较为疏松的具有一定抗氧化性能的Cr2WO6层。

关键词 金属材料核聚变W-Cr-Zr合金自钝化钨合金初始表面氧化层氧化行为    
Abstract

Self-passivating tungsten alloy (SPTA) inhibits the further oxidation by forming dense oxide scale on its surface. Therefore, the use of self-passivating tungsten alloys as the first wall candidate material for nuclear fusion is a material solution proposed to address the safety hazards that may arise in the event of loss-of-coolant accident in future nuclear fusion devices. The compact oxide scale formed on the surface of self-passivating tungsten alloys requires the participation of passivating elements, and their oxidation behavior is related to its composition and structure. Herein, an alloy W87.6-Cr11.4-Zr1.0 (in mass fraction) was prepared by mechanical alloying and field assisted sintering technology, then its oxidation behavior was assessed intermittently at 1000 oC in a flowing gas mixture Ar+20%O2 (volume fraction). The surface roughness, morphology and phase composition of the W-Cr-Zr alloy before and after oxidation were characterized by 3D laser measurement microscopy, scanning electron microscope (SEM) and X-ray diffraction instrument (XRD), and the influence of oxide scale structure on the subsequent oxidation behavior of W-Cr-Zr alloy was investigated. The results show that the larger the surface roughness, the more cracks of the oxide scale formed in the initial oxidation stage. In the subsequent oxidation process, cracks act as the short-circuit channel for inward migration of oxygen to accelerate the oxidation of the underneath alloy substrate, thus having a large linear oxidation rate. The top layer of the oxide scale formed by the oxidation of W-Cr-Zr alloy is Cr2WO6 with high temperature stability, and the inner layer is WO2.83 with easy sublimation. After the removal of the Cr2WO6 layer, a relatively loose Cr2WO6 layer can still grow in the subsequent oxidation process along with the severe oxidation of the matrix and the rapid sublimation of WO2.83, which has certain protectiveness for the substrate. Therefore, to adjust or control the microstructure and oxidation behavior of the tungsten alloy is of great reference value for material selection and operation safety of nuclear fusion device components.

Key wordsmetallic materials    nuclear fusion    W-Cr-Zr alloy    self-passivating tungsten alloy    initial surface layer    oxidation behavior
收稿日期: 2024-05-16     
ZTFLH:  TL34  
基金资助:国家自然科学基金国际(地区)合作与交流重点项目(52020105014);国家重点研发计划(2022YFE03140001);高等学校学科创新引智计划“清洁能源新材料与技术”(111 计划,B18018)
通讯作者: 吴玉程,ycwu@hfut.edu.cn,研究方向为能源材料及纳米功能材料
Corresponding author: WU Yucheng, Tel: (0551)62905985, E-mail: ycwu@hfut.edu.cn
作者简介: 吴玉程,男,1962年生,教授
图1  W-Cr-Zr合金氧化前的显微组织、不同表面处理后样品的表面形貌和相应的线粗糙度
图2  表面粗糙度不同的W-Cr-Zr合金在1000 ℃氧化2 min后氧化层表面的形貌
图3  表面粗糙度不同的W-Cr-Zr合金在1000 ℃的氧化行为曲线和线性氧化速率与表面粗糙度的关系
图4  表面粗糙度不同的W-Cr-Zr合金在1000 ℃氧化20 h后的XRD谱
图5  表面粗糙度不同的W-Cr-Zr合金在1000 ℃氧化20 h后的表面形貌
图6  表面粗糙度不同的W-Cr-Zr合金在1000 ℃氧化20 h后氧化层的截面、氧化层厚度与样品氧化前表面粗糙度的关系以及样品氧化后的表面粗糙度
图7  W-Cr-Zr合金在1000 ℃氧化的氧化增重曲线(红线)和去除表面氧化物后的氧化增重曲线(蓝线)
图8  W-Cr-Zr合金氧化40 h后、去除最表层和再氧化40 h后的XRD谱
图9  W-Cr-Zr合金氧化40 h后的表面形貌、去除最表层氧化物后的形貌以及再氧化40 h后的表面形貌
图10  W-Cr-Zr合金氧化40 h后的截面、再氧化40 h后的截面以及相应的W、Cr和O的面扫描能谱
1 Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55: 171
doi: 10.11900/0412.1961.2018.00404
1 吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55: 171
2 Wu Y C. Research progress in irradiation damage behavior of tungsten and its alloys for nuclear fusion reactor [J]. Acta Metall. Sin., 2019, 55: 939
doi: 10.11900/0412.1961.2018.00405
2 吴玉程. 核聚变堆用W及其合金辐照损伤行为研究进展 [J]. 金属学报, 2019, 55: 939
doi: 10.11900/0412.1961.2018.00405
3 Nagy D, Humphry-Baker S A. An oxidation mechanism map for tungsten [J]. Scr. Mater., 2022, 209: 114373
4 Davis J W, Barabash V R, Makhankov A, et al. Assessment of tungsten for use in the ITER plasma facing components [J]. J. Nucl. Mater., 1998, 258-263: 308
5 Wegener T, Klein F, Litnovsky A, et al. Development of yttrium-containing self-passivating tungsten alloys for future fusion power plants [J]. Nucl. Mater. Energy, 2016, 9: 394
6 Maisonnier D, Cook I, Pierre S, et al. The European power plant conceptual study [J]. Fusion Eng. Des., 2005, 75-79: 1173
7 Gromov A, Kwon Y S, Choi P P. Interaction of tungsten nanopowders with air under different conditions [J]. Scr. Mater., 2005, 52(5): 375
8 Telu S, Patra A, Sankaranarayana M, et al. Microstructure and cyclic oxidation behavior of W-Cr alloys prepared by sintering of mechanically alloyed nanocrystalline powders [J]. Int. J. Refract. Met. Hard Mater., 2013, 36: 191
9 Koch F, Bolt H. Self passivating W-based alloys as plasma facing material for nuclear fusion [J]. Phys. Scr., 2007, 2007(T128): 100
10 Liu W, Di J, Zhang W X, et al. Oxidation resistance behavior of smart W-Si bulk composites [J]. Corros. Sci., 2020, 163: 108222
11 Litnovsky A, Wegener T, Klein F, et al. New oxidation-resistant tungsten alloys for use in the nuclear fusion reactors [J]. Phys. Scr., 2017, 2017(T170): 014012
12 Tan X Y, Klein F, Litnovsky A, et al. Evaluation of the high temperature oxidation of W-Cr-Zr self-passivating alloys [J]. Corros. Sci., 2019, 147: 201
doi: 10.1016/j.corsci.2018.11.022
13 Chen H Y, Yuan J L, Lü B H, et al. Research status and trend of ultra-precision polishing on tungsten surface for fusion reactors [J]. J. Mech. Eng., 2020, 56: 11
doi: 10.3901/JME.2020.21.011
13 陈泓谕, 袁巨龙, 吕冰海 等. 核聚变堆用钨表面超精密抛光的研究现状与趋势 [J]. 机械工程学报, 2020, 56: 11
doi: 10.3901/JME.2020.21.011
14 Nowak W J. Effect of surface roughness on oxidation resistance of stainless steel AISI 316Ti during exposure at high temperature [J]. J. Mater. Eng. Perform., 2020, 29(12): 8060
15 Li J, Cao T S, Cheng C, et al. Effect of initial surface roughness on the cyclic oxidation behavior of an austenitic stainless steel [J]. J. Mater. Sci., 2022, 57(14): 7310
16 Zhang J, Huang J P, Shang G F, et al. Effect of surface roughness on oxidation behavior of Ni-Cr-Al alloy at high temperatures [J]. Corros. Sci. Prot. Technol., 2016, 28: 531
16 张 俊, 黄嘉鹏, 尚根峰 等. 不同表面粗糙度镍铬铝合金的高温氧化行为 [J]. 腐蚀科学与防护技术, 2016, 28: 531
17 Sal E, Garcia-Rosales C, Schlueter K, et al. Microstructure, oxidation behaviour and thermal shock resistance of self-passivating W-Cr-Y-Zr alloys [J]. Nucl. Mater. Energy, 2020, 24: 100770
18 Zhu H J, Tan X Y, Tu Q B, et al. Effect of pressure on densification and microstructure of W-Cr-Y-Zr alloy during SPS consolidated at 1000 oC [J]. Metals, 2022, 12(9): 1437
19 Wang W J, Tan X Y, Yang S P, et al. The influence of powder characteristics on densification behavior and microstructure evolution of W-Cr-Zr alloy consolidated by field-assisted sintering technology [J]. Int. J. Refract. Met. Hard Mater., 2022, 108: 105939
20 Wu Y C, Wang W J, Tan X Y, et al. Multifunctional high-temperature atmosphere tube furnace with multiple temperature zones [P]. Chin Pat., 211043216U, 2020
20 吴玉程, 王武杰, 谭晓月 等. 一种多温区多功能高温气氛管式炉 [P]. 中国专利, 211043216U, 2020))
21 Schütze M. Stress effects in high temperature oxidation [J]. Mater. Sci. Eng., 2016
22 Wang X, Szpunar J A. Effects of grain sizes on the oxidation behavior of Ni-based alloy 230 and N [J]. J. Alloy. Compd., 2018, 752: 40
23 Gardinier C F, Chang L L Y. Phase relations in the systems Cr2O3-WO3 and Fe2O3-WO3 [J]. J. Am. Ceram. Soc., 1978, 61(7-8): 376
24 Bayer G. Cr2WO6, a new trirutile compound [J]. J. Am. Ceram. Soc., 1960, 43(9): 495
25 Meyer G, Oosterom J F, De Roo J L. The vapour pressure of tungsten trioxide [J]. Recl. Trav. Chim. Pays-Bas, 1959, 78(6): 412
26 Klein F. Studies of oxidation resistant tungsten alloys at temperatures of 1100 K to 1475 K [D]. Bochum: Ruhr-Universität Bochum, 2020
27 Czerwinski F. The reactive element effect on high-temperature oxidation of magnesium [J]. Int. Mater. Rev., 2015, 60(5): 264
28 Calvo A, Schlueter K, Tejado E, et al. Self-passivating tungsten alloys of the system W-Cr-Y for high temperature applications [J]. Int. J. Refract. Met. Hard Mater., 2018, 73: 29
[1] 邱玮, 李玉林, 闫瑞, 李雅文, 陈维, 甘浪, 任延杰, 陈荐. Al对镁空气电池用挤压态Mg-Al-Ca-Mn合金阳极腐蚀和放电性能的影响[J]. 材料研究学报, 2025, 39(5): 389-400.
[2] 李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.
[3] 任学昌, 安菊, 付宁, 姚小庆, 杨镇瑜, 陈泓锦. 在模拟太阳光下溶剂热时长对MIL-88A(Fe)活化过一硫酸盐降解罗丹明B催化性能的影响[J]. 材料研究学报, 2025, 39(5): 329-342.
[4] 胥聪敏, 孙姝雯, 朱文胜, 陈志强, 李城臣. 三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, 39(4): 281-288.
[5] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[6] 符纯国, 徐世伟, 杨晓益, 李萌蘖. 焊接热源模式对5083-H111铝合金接头性能的影响[J]. 材料研究学报, 2025, 39(4): 305-313.
[7] 冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.
[8] 张慧芳, 吴浩, 肖传民, 李奇, 谢君, 李金国, 王振江, 于金江. 热处理对一种 γʹ 沉淀强化钴基高温合金拉伸性能的影响[J]. 材料研究学报, 2025, 39(3): 198-206.
[9] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.
[10] 于兴福, 西克宇, 张宏伟, 王全振, 郝天赐, 郑冬月, 苏勇. 离子渗氮后的扩散处理对7Cr7Mo2V2Si冷作模具钢性能的影响[J]. 材料研究学报, 2025, 39(3): 225-232.
[11] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[12] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.
[13] 胥聪敏, 李雪丽, 付安庆, 孙姝雯, 陈志强, 李城臣. 复配杀菌缓蚀剂对N80钢在SRB环境中微生物腐蚀行为的影响[J]. 材料研究学报, 2025, 39(2): 145-152.
[14] 袁鸿渊, 张思倩, 王栋, 张英建, 马力, 于明涵, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种热障涂层/DZ411镍基高温合金体系界面组织演变的影响[J]. 材料研究学报, 2025, 39(2): 113-125.
[15] 吴晓祺, 万红江, 明洪亮, 王俭秋, 柯伟, 韩恩厚. 原位小冲头压缩速率对X65管线钢氢脆敏感性的影响[J]. 材料研究学报, 2025, 39(2): 92-102.