材料研究学报, 2025, 39(5): 353-361 DOI: 10.11901/1005.3093.2024.330

研究论文

FeCoCrNiMn/6061铝基复合材料的组织性能

胡勇,, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛

华东交通大学材料科学与工程学院 南昌 330013

Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites

HU Yong,, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao

School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China

通讯作者: 胡勇,教授,huyong@ecjtu.edu.cn,研究方向为金属及其复合材料

责任编辑: 黄青

收稿日期: 2024-07-27   修回日期: 2024-11-11  

基金资助: 国家自然科学基金(51865011)
江西省自然科学基金(20224BAB214048)

Corresponding authors: HU Yong, Tel: 13576012078, E-mail:huyong@ecjtu.edu.cn

Received: 2024-07-27   Revised: 2024-11-11  

Fund supported: National Natural Science Foundation of China(51865011)
Natural Science Foundation of Jiangxi Province(20224BAB214048)

作者简介 About authors

胡 勇,男,1982年生,博士

摘要

用真空热压烧结工艺制备了FeCoCrNiMn/6061铝基复合材料,使用扫描电子显微镜(SEM)、能谱分析(EDS)、XRD谱和万能试验机等手段表征其微观组织和力学性能,研究了FeCoCrNiMn 颗粒对其性能的影响。结果表明:这种复合材料中的FeCoCrNiMn颗粒与6061铝合金基体界面结合良好,界面结合处有厚度约为0.5 μm的扩散层。随着FeCoCrNiMn 颗粒体积分数的提高材料的布氏硬度、屈服强度和抗拉强度随之提高,延伸率降低。FeCoCrNiMn颗粒体积分数为20%的材料,其屈服强度和抗拉强度分别为137.53 MPa、186.00 MPa,比6061铝合金分别提高了71.12%和24.41%。FeCoCrNiMn/6061铝基复合材料的强化机制,是热膨胀系数错配强化、细晶强化和载荷转移强化,其中热膨胀系数错配强化的贡献最大。

关键词: 复合材料; FeCoCrNiMn颗粒; 铝基复合材料; 热压烧结; 微观组织; 力学性能

Abstract

Novel composites of FeCoCrNiMn particle reinforced 6061 Al-alloy matrix (FeCoCrNiMn/6061 Al-alloy)were prepared by vacuum hot-pressing sintering technique. The microstructure of the composites was studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The mechanical properties of the composites were measured by universal testing machine. The results indicate that the interface between FeCoCrNiMn particles and the 6061 Al-alloy matrix is well bonded, with a diffusion layer of approximately 0.5 μm at the interface. With the increase of the volume fraction of FeCoCrNiMn particles, the Brinell hardness, yield strength and tensile strength of the composites increase gradually, while the elongation at break decreases gradually. When the volume fraction of FeCoCrNiMn particles is 20%, the yield strength and tensile strength reach 137.53 MPa and 186.00 MPa, respectively, which are 71.12% and 24.41% higher than 6061 Al-alloy. The strengthening mechanisms of FeCoCrNiMn/6061 Al-alloy matrix composites may mainly be thermal mismatch strengthening, fine-grain strengthening and load transfer strengthening, among which the thermal mismatch strengthening contributes the most.

Keywords: composite; FeCoCrNiMn particles; aluminum matrix composites; hot press sintering; microstructure; mechanical property

PDF (13004KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361 DOI:10.11901/1005.3093.2024.330

HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites[J]. Earth Science, 2025, 39(5): 353-361 DOI:10.11901/1005.3093.2024.330

铝基复合材料的比强度和比模量较高、热膨胀系数较低,在交通运输和航空航天等领域有广阔的应用前景[1~3]。铝基复合材料,可分为纤维增强铝基复合材料和颗粒增强铝基复合材料[4~6]。颗粒增强铝基复合材料的各向异性小、制备方法多和成本较低。铝基复合材料的常用增强相,有SiC、Al2O3、B4C、TiC、TiB2[7~11]等陶瓷颗粒。但是,陶瓷颗粒较脆且其与铝合金基体的润湿性较差,影响这种复合材料的塑性[12~14]

高熵合金具有较高的强度、硬度、热稳定性和耐磨性,与铝基体之间金属-金属结合的界面使其润湿性和相容性极好[15,16]。因此,高熵合金是铝基复合材料的理想增强相[17~19]。Yang等[20]用搅拌摩擦制备的AlCoCrFeNi颗粒增强铝基复合材料,其AlCoCrFeNi颗粒均匀地分散在铝合金基体中,使其屈服强度和抗拉强度与未添加AlCoCrFeNi颗粒相比分别提高了16.8%和28.1%。Lu等[21]用粉末冶金法制备了SiC颗粒和纳米晶CoNiFeCrAl0.6Ti0.4颗粒增强2024铝基复合材料。结果表明,质量分数10% CoNiFeCrAl0.6Ti0.4/2024铝基复合材料的综合性能优于质量分数10% SiC/2024铝基复合材料,且随着CoNiFeCrAl0.6Ti0.4颗粒含量的提高其组织均匀性和可加工性优势愈加显著。Luo等[22]用搅拌铸造和低温轧制法制备AlCoCrFeNi颗粒增强AA1099铝基复合材料,发现质量分数3% AlCoCrFeNi/AA1099铝基复合材料的低温拉伸强度比室温提高了约21.8%。Zhang等[23]用超声铸造制备了Al0.5CoCrFeNi颗粒增强AA2219铝基复合材料,发现添加不同体积分数的Al0.5CoCrFeNi颗粒其抗拉强度、屈服强度和硬度最大分别提高73.0%、91.1%和46.2%。

真空热压烧结工艺的配料准确性和均匀性较高,且有低成本、高纯度等优点。本文使用FeCoCrNiMn颗粒为增强体用真空热压烧结制备FeCoCrNiMn/6061铝基复合材料,研究FeCoCrNiMn颗粒对其微观组织和力学性能的影响。

1 实验方法

实验用原料,是用雾化法制备的6061铝合金粉末和FeCoCrNiMn粉末。6061铝合金粉末和FeCoCrNiMn粉末为规则球状,6061铝合金粉末的平均尺寸小于45 μm (图1a),FeCoCrNiMn颗粒的平均尺寸为45~75 μm (图1b)。将体积分数分别为0%、4%、8%、12%、16%和20%的FeCoCrNiMn粉末与6061铝合金粉末混合,用球磨机球磨3 h (转速为300 r/min),球磨混合后的粉末仍保持球状(图1c)。将球磨后的粉末在80 ℃干燥2 h后装入模具,用万能实验机冷压成型(单轴压力为400 MPa,保压时间为2 min),制备出直径为46 mm厚度为14.6 mm坯料;将坯料放入真空热压烧结炉烧结(真空度为1 × 10-3 Pa,加热速度为10 ℃/min),温度达到540 ℃时在40 MPa压力下保温2 h,然后随炉自然冷却。

图1

图1   6061、FeCoCrNiMn 和FeCoCrNiMn + 6061粉末的形貌

Fig.1   Powder morphology of 6061 (a), FeCoCrNiMn (b) and FeCoCrNiMn + 6061 (c)


用万能试验机进行室温拉伸性能测试(拉伸试样标距为10 mm),拉伸速率为0.6 mm/min。将金相试样打磨抛光用凯勒试剂(95 mL H2O + 2.5 mL HNO3 + 1.5 mL HCl + 1 mL HF)腐蚀,用日立SU8010冷场发射扫描电子显微镜观察其微观组织和断口形貌,用扫描电镜配备的能谱仪分析复合材料界面的元素成分。用X射线衍射仪(XRD,Shimadzu XRD-6100)测试复合材料的XRD谱,测试条件为:Cu靶射线(入射线波长λ = 0.15418 nm),Ni滤波片,管压40 kV,管流150 mA,扫描速度为2(°)/min;以蒸馏水为液体介质。用阿基米德排水法测量复合材料的致密度;用截距法统计晶粒尺寸的分布;用HB-3000布氏硬度计测量材料的硬度,载荷为2500 N,加载时间为30 s。

2 实验结果

2.1 微观组织

表1列出了FeCoCrNiMn粉末体积分数不同的FeCoCrNiMn/6061铝基复合材料的理论密度和实际密度。复合材料的理论密度ρt(g/cm3)为[24]

ρt=ρAlϕAl+ρHϕH

式中ρAl为6061铝基体的密度(g/cm3),ϕAl为6061铝基体的体积分数,ρH为FeCoCrNiMn颗粒的密度(g/cm3),ϕH为FeCoCrNiMn颗粒的体积分数。

表1   FeCoCrNiMn/6061铝基复合材料的实际密度和理论密度

Table 1  Actual and theoretical densities of FeCoCrNiMn/6061 aluminum matrix composites

Volume fraction of FeCoCrNiMn particles0%4%8%12%16%20%
ρt / g·cm-32.722.9353.153.3663.5813.796
ρa / g·cm-32.6772.8813.0763.2843.4713.669

新窗口打开| 下载CSV


复合材料的致密度[25]

θ=ρaρt×100%

式中ρa为试样的实际密度(g/cm3)。图2给出了FeCoCrNiMn粉末体积分数不同的FeCoCrNiMn/6061铝基复合材料的致密度。可以看出,这种复合材料的致密度较高(都高于96%)。未添加FeCoCrNiMn颗粒的6061铝合金致密度为98.42%,FeCoCrNiMn颗粒的加入使FeCoCrNiMn/6061铝基复合材料的致密度略微下降,FeCoCrNiMn颗粒体积分数为20%的复合材料其致密度为96.65%。其原因是,添加较多的FeCoCrNiMn增强颗粒容易聚集,难以填补复合材料中的孔隙而使致密度降低。

图2

图2   FeCoCrNiMn /6061铝基复合材料的致密度

Fig.2   Relative density of FeCoCrNiMn /6061 aluminum matrix composites


图3给出了FeCoCrNiMn粉末体积分数不同的FeCoCrNiMn/6061铝基复合材料的微观组织。可以看出,6061铝合金基体由随机分布的细等轴晶和粗等轴晶组成,细晶粒分布在粗等轴晶周围。由图3b~f可见,FeCoCrNiMn颗粒保持球形,均匀弥散地分布于基体中。FeCoCrNiMn颗粒与6061铝合金基体之间的边界清晰,表明两者的相容性良好。随着体积分数的提高组织内的FeCoCrNiMn颗粒越来越密集。根据图4中的晶粒尺寸分布,复合材料的平均晶粒尺寸为8.94~13.71 μm。与未添加FeCoCrNiMn颗粒的6061铝合金相比(图3a),FeCoCrNiMn/6061铝基复合材料中粗大的等轴晶粒明显减少。同时,随着FeCoCrNiMn颗粒体积分数的提高,6061铝合金基体中生成了大量更细的等轴晶粒。其原因是,FeCoCrNiMn颗粒的加入阻止了晶界和亚晶界的迁移和长大,从而使复合材料的晶粒细化[26]。但是,FeCoCrNiMn颗粒体积分数达到12%时局部出现团聚现象,少量FeCoCrNiMn颗粒拉长变形,呈不规则带尖角的椭圆形。其原因是,FeCoCrNiMn颗粒含量的提高使其与球磨碰撞的频率提高,部分FeCoCrNiMn颗粒变形或破裂。

图3

图3   FeCoCrNiMn/6061铝基复合材料的显微组织

Fig.3   Microstructures of FeCoCrNiMn /6061 aluminum matrix composites

(a) 0%, (b) 4%, (c) 8%, (d) 12%, (e) 16%, (f) 20%


图4

图4   FeCoCrNiMn/6061铝基复合材料的晶粒尺寸分布

Fig.4   Grain size distribution of FeCoCrNiMn/6061 aluminum matrix composites

(a) 0%, (b) 4%, (c) 8%, (d) 12%, (e) 16%, (f) 20%


图5给出了6061铝合金和FeCoCrNiMn粉末体积分数为12%的FeCoCrNiMn/6061铝基复合材料的XRD谱。在图5中添加FeCoCrNiMn颗粒后,复合材料的谱中除了Al相的衍射峰出现了几个较弱的FeCoCrNiMn增强相的衍射峰。由图5还可见,6061铝合金各衍射峰的衍射角轻微偏移,是FeCoCrNiMn颗粒元素扩散引起了6061铝合金晶格畸变所致。

图5

图5   6061铝合金和其体积分数为12%的FeCoCrNiMn/6061铝基复合材料的XRD谱

Fig.5   XRD patterns of 6061 aluminum alloy and FeCoCrNiMn/6061 aluminum matrix composites with 12% 6061 aluminum alloy


图6给出了FeCoCrNiMn/6061铝基复合材料元素的EDS分析结果,图中的深色区域是6061铝合金基体,FeCoCrNiMn颗粒呈圆球状。可以看出,FeCoCrNiMn增强颗粒与6061铝合金基体的边界清晰,界面结合处没有发生明显的反应,FeCoCrNiMn颗粒中的各元素分布均匀,没有出现明显的偏析。图7给出了对FeCoCrNiM n/6061铝基复合材料界面层的EDS线扫描结果,以深入研究在6061铝合金基体中FeCoCrNiMn颗粒的元素分散情况。可以看出,Fe、Co、Cr、Ni、Mn以及Al在扩散层中的分布有些不同。这是在加热处理过程中高熵合金的迟滞效应以及各元素不同的扩散速率所致。与其他元素相比,Co、Ni元素在Al中的扩散系数较高,容易扩散到Al中[27]。分析结果表明,FeCoCrNiMn颗粒与6061铝合金基体结合处出现了薄薄的扩散层,其厚度约为0.5 μm。这表明,FeCoCrNiMn颗粒与6061铝合金之间的界面润湿性良好,形成了较好的冶金结合而未生成影响复合材料性能的金属间化合物。其原因是:高熵合金超高的混合熵和特殊的晶体结构,使其扩散系数明显低于常规材料[28]。其晶格畸变阻碍了原子在合金中的扩散,使原子扩散的速率降低。因此,FeCoCrNiMn颗粒中各元素向6061铝合金基体的扩散减缓。其次,在烧结过程中半径较大的Al原子需要足够的能量克服其与高熵合金晶体结构中其他原子之间的势垒。没有足够的能量Al原子则不能取代高熵合金中的其他原子,使其中Al元素的含量极低[29~31]

图6

图6   FeCoCrNiMn/6061铝基复合材料元素的EDS分析

Fig.6   EDS element analysis of FeCoCrNiMn/6061 Al matrix composites


图7

图7   FeCoCrNiMn/6061铝基复合材料的界面层EDS线扫描分析

Fig.7   EDS line scanning analysis of the interface layer of FeCoCrNiMn/6061 Al matrix composites


2.2 FeCoCrNiMn/6061铝基复合材料的力学性能

图8给出了FeCoCrNiMn/6061铝基复合材料的布氏硬度。6061铝合金的布氏硬度为37.1HBW,FeCoCrNiMn颗粒的增加使复合材料的布氏硬度提高。FeCoCrNiMn颗粒的体积分数为20%的FeCoCrNiMn/6061铝基复合材料,其布氏硬度提高了60.6%。其原因是,FeCoCrNiMn颗粒的硬度高于6061铝合金。Cheng等[32]用真空热压烧结工艺制备的FeCoCrNiMn高熵合金,其显微硬度为472HV,使得复合材料受力时能抵抗变形。同时,加入的FeCoCrNiMn颗粒阻碍位错运动和使晶粒细化,FeCoCrNiMn颗粒与6061铝合金基体良好的界面结合也使载荷有效地传递到增强相[33]。上述因素的共同作用,使FeCoCrNiMn/6061铝基复合材料的布氏硬度提高。

图8

图8   FeCoCrNiMn/6061铝基复合材料的布氏硬度

Fig.8   Brinell hardness of FeCoCrNiMn/6061 aluminum matrix composites


图9给出了FeCoCrNiMn/6061铝基复合材料的拉伸应力-应变曲线。由图9可见,6061铝合金的屈服强度、抗拉强度和伸长率分别为80.37 MPa、149.50 MPa和35.95%。FeCoCrNiMn颗粒的添加使复合材料的抗拉强度提高和伸长率降低。添加体积分数为20%的FeCoCrNiMn颗粒,使复合材料的屈服强度、抗拉强度和伸长率分别达到137.53 MPa、186.00 MPa和18.59%。FeCoCrNiMn/6061铝基复合材料塑性降低的主要原因:在拉伸过程中,FeCoCrNiMn颗粒与6061铝合金的变形不协调和不均匀,从而在材料内产生局部应力集中。这种应力集中易使裂纹萌发,进而降低复合材料的塑性;另外, 扩散到铝基体中的Fe、Co、Cr、Ni、Mn等元素与Al元素生成固溶体,使材料的强度提高的同时使其塑性降低。固溶原子阻碍基体原子的移动,从而使材料的塑性变形能力降低。

图9

图9   FeCoCrNiMn/6061铝基复合材料的拉伸应力-应变曲线

Fig.9   Tensile stress-strain curves of FeCoCrNiMn/6061 aluminum matrix composites


2.3 FeCoCrNiMn/6061铝基复合材料断口的形貌

图10给出了FeCoCrNiMn/6061铝基复合材料断口的形貌。6061铝合金断口的形貌如图10a所示,可见断口表面由解理面和韧窝组成,解理面均匀分布且较为平整,韧窝较深。图10b~f给出了加入FeCoCrNiMn颗粒的复合材料的拉伸断口形貌。可以看出,在拉伸断口处撕裂棱明显,出现大量均匀的浅孔洞和小尺寸的等轴状韧窝,是典型的韧性断裂。在FeCoCrNiMn颗粒表面上,还残留着少量细小的韧窝。这是FeCoCrNiMn颗粒与6061铝合金基体形成的扩散界面残留在FeCoCrNiMn颗粒表面,表明FeCoCrNiMn颗粒与6061铝合金基体形成的界面强度稍大于6061铝合金而低于FeCoCrNiMn颗粒。这表明,断裂并不是简单的颗粒脱落,FeCoCrNiMn颗粒中各元素的扩散有助于界面结合,载荷能有效地传递给增强颗粒,宏观表现为复合材料的强韧性更好。随着FeCoCrNiMn颗粒体积分数的提高断裂面韧窝逐渐变浅和数量减少,即复合材料的塑性降低。如图10f所示,随着FeCoCrNiMn颗粒的增多,微观组织中出现了颗粒团聚。这种颗粒团聚使体积分数为20%的FeCoCrNiMn颗粒提高复合材料抗拉强度的效果减弱。

图10

图10   FeCoCrNiMn/6061铝基复合材料的拉伸断口形貌

Fig.10   Tensile fracture morphologies of FeCoCrNiMn/6061 aluminum matrix composites

(a) 0%, (b) 4%, (c) 8%, (d) 12%, (e) 16% and (f) 20%


3 FeCoCrNiMn颗粒的增强机制

图9可见,FeCoCrNiMn颗粒的加入显著提高了FeCoCrNiMn/6061铝基复合材料的力学性能。FeCoCrNiMn颗粒的强化机制有:热膨胀系数错配强化、细晶强化和载荷转移强化。这些强化机制使复合材料屈服强度(σCY)可表示为[34]

σCY=σ0+ΔσCET+ΔσHall-Petch+ΔσL

式中σ0为6061铝合金的屈服强度,ΔσCETΔσHall-PetchΔσL分别为热膨胀系数错配强化、细晶强化和载荷转移强化提供的屈服强度。

热膨胀系数错配强化:在制备过程中,FeCoCrNiMn/6061铝基复合材料受热后冷却,使复合材料脱离了热平衡状态。FeCoCrNiMn增强颗粒与6061铝合金基体之间因热膨胀系数不同而产生的不同程度收缩,使界面结合处产生了残余应力。这种残余应力阻碍位错移动而使6061铝合金基体中的位错密度提高,从而使FeCoCrNiMn/6061铝基复合材料的屈服强度提高。热膨胀系数错配强化引起的屈服强度的提高,可表示为[35,36]

ΔσCET=KGBBΔTΔαfbd(1-f)

式中K为常数(1.25);G为6061铝合金的剪切模量(26.2 GPa);Δα为6061铝合金的热膨胀系数(23.86 × 10-6/K)与FeCoCrNiMn颗粒热膨胀系数(15 × 10-6/K)之差;ΔT为复合材料的加热温度(813 K)与室温(298K)之差;B为取决于增强颗粒的几何形状的几何常数(取值10~12),对于等轴颗粒B取12;f为增强颗粒的体积分数,d为复合材料的晶粒尺寸, b 为Burgers矢量(取0.286 nm)。

细晶强化:图4给出了FeCoCrNiMn颗粒体积分数不同的FeCoCrNiMn/6061铝基复合材料晶粒尺寸的分布。在6061铝合金中引入FeCoCrNiMn颗粒使晶粒细化和阻碍位错的运动,达到增强效果。其对屈服强度的贡献可用Hall-Petch公式 [37]

ΔσHall-Petch=k(d-1/2-d0-1/2)

表示,式中d0为未添加增强颗粒时6061铝合金的晶粒尺寸;k为常数,6061铝合金为0.17 MPam[38]

载荷转移强化:外加载荷使FeCoCrNiMn颗粒与6061铝合金基体之间出现载荷转移区域。在这个区域内,载荷通过界面从6061铝合金基体转移到FeCoCrNiMn颗粒,强度更高的增强颗粒承担了部分应力。这种载荷转移能有效地阻止位错的移动,从而提高材料的屈服强度。FeCoCrNiMn颗粒与6061铝合金基体形成的良好界面是该机制的基础。载荷转移强化机制对屈服强度的贡献可表示为[35]

ΔσL=fσm1+ts4l

式中σm为基体的屈服强度;lt分别为增强颗粒平行和垂直于载荷方向的长度;s为颗粒长径比。等轴颗粒的ΔσL可表示为[22]

ΔσL=0.5σmfs

各种强化机制对复合材料屈服强度的贡献如图11所示。可以看出,热膨胀系数错配强化机制对复合材料的影响最大,其次是载荷转移强化机制。根据 式(3)计算出FeCoCrNiMn/6061铝基复合复合材料的总屈服强度[37],其理论值如图12所示,可见理论值与实验值较为吻合。

图11

图11   各种强化机制对FeCoCrNiMn/6061铝基复合材料屈服强度的贡献

Fig.11   Contribution of various strengthening mechanisms to the yield strength of FeCoCrNiMn/6061 aluminum matrix composites


图12

图12   FeCoCrNiMn/6061铝基复合材料的屈服强度预测曲线和实验值

Fig.12   Prediction curve and experimental value of yield strength of FeCoCrNiMn/6061 aluminum matrix composites


4 结论

(1) 用真空热压烧结可制备FeCoCrNiMn/6061铝基复合材料,FeCoCrNiMn颗粒在基体中分布均匀、致密度高于96%。

(2) FeCoCrNiMn颗粒的加入,使FeCoCrNiMn/6061铝基复合材料的屈服强度和抗拉强度提高。FeCoCrNiMn颗粒的体积分数为20%的复合材料其抗拉强度最高(比6061铝合金提高24%)。FeCoCrNiMn/6061铝基复合材料拉伸断裂,属于典型的韧性断裂。

(3) FeCoCrNiMn/6061铝基复合材料的强化机制,包括热膨胀系数错配强化、细晶强化和载荷转移强化。

参考文献

Garg P, Jamwal A, Kumar D, et al.

Advance research progresses in aluminium matrix composites: manufacturing & applications

[J]. J. Mater. Res. Technol., 2019, 8(5): 4924

[本文引用: 1]

Suthar J, Patel K M.

Processing issues, machining, and applications of aluminum metal matrix composites

[J]. Mater. Manuf. Process., 2017, 33(5): 499

Zhao Y F, Tian Z Y, Chen Z M, et al.

Research progress in mechanical properties of AlN reinforced aluminum matrix composites

[J]. J. Mater. Eng., 2023, 51(12): 24

DOI      [本文引用: 1]

The lightweight and high strength toughness of materials are of great significance for achieving energy-saving, environmental protection, and sustainable development strategies. Particle reinforced aluminum matrix composites, due to their combined performance advantages of reinforcing phase and matrix alloy, can achieve high modulus, high strength, and high heat resistance, and have become one of the focuses of high performance light alloy research and development.AlN reinforced aluminum matrix composites have high degree of microstructure design and can effectively improve the strength and toughness of the Al matrix, which has attracted extensive attention from scholars at home and abroad. The mechanical property progress of AlN reinforced aluminum matrix composites was focused in this paper. Firstly, the effects of preparation methods, interface structure regulation, hybrid strengthening and configuration design on the strength and toughness of AlN reinforced aluminum matrix composites were introduced. Influence of configuration design on the strength and toughening effect of AlN reinforced aluminum matrix composites was illustrated at room temperature and high temperature strengthening, respectively. Then, mechanism of the heterogeneous induced strengthening at room temperature and load transfer strengthening at high temperatures were emphasized. Finally, the new preparation technology, precise microstructure design and strengthening mechanism of heterogeneous configuration of AlN reinforced aluminum matrix composites were prospected.

赵永峰, 田泽源, 陈宗民 .

AlN增强铝基复合材料力学性能研究进展

[J]. 材料工程, 2023, 51(12): 24

DOI      [本文引用: 1]

材料的轻量化与高强韧性对于实现节能、环保和可持续发展战略具有重要的意义。颗粒增强铝基复合材料由于兼具增强相与基体合金的性能优势,可实现高模量、高强度及高耐热性等,已成为高性能轻合金研发的焦点之一。AlN增强铝基复合材料微观组织设计自由度高,可显著改善铝基复合材料的强韧性,已引起国内外学者的广泛关注。本文综述了AlN增强铝基复合材料力学性能的研究进展,首先介绍了AlN制备方法、界面结构调控、混杂强化与构型化设计对AlN增强铝基复合材料强韧性的影响,从室温与高温强化两方面重点讨论了构型化设计对AlN增强铝基复合材料强韧化效果的影响,然后指出室温下异质变形诱导强化与高温下载荷传递强化机制,最后,对AlN增强铝基复合材料新制备工艺、精准化组织设计与非均质AlN构型强化机制等研究方向进行了展望。

Zhang L, Yang L, Leng J, et al.

Alloying behavior and properties of Al-based composites reinforced with Al85Fe15 metallic glass particles fabricated by mechanical alloying and hot pressing consolidation

[J]. JOM, 2017, 69(4): 748

[本文引用: 1]

Hu J, Wu G, Zhang Q, et al.

Damping capacity of the Al matrix composite reinforced with SiC particle and TiNi fiber

[J]. Sci. Eng. Compos. Mater., 2016, 23(2): 179

Xiang Z B, Nie J H, Wei S H, et al.

Effects of particle-matrix matching on strengthening mechanism of particle reinforced Al matrix composites

[J]. Chin. J. Mater. Res., 2015, 29(10): 744

DOI      [本文引用: 1]

Al-based composites of 25% SiCp/6061Al and 25% Al2O3/6061Al were fabricated by powder metallurgy method, and then suffered from different solution-aging treatments to ensure the composites with desired strength. The effect of particle-matrix compatibility on the tensile property of the composites was investigated by tensile test and SEM observation. Results show that the low strength Al2O3 particles were not suitable to strengthening the high strength 6061Al matrix. The effect of particle-matrix compatibility on strengthening mechanism was discussed, and it is believed that the particle-matrix compatibility affects the composite property through the stress transfer mechanism. The relationships between particle-matrix compatibility with the particle fracture and composites yielding were revealed, It is obtained that particle cracking decreased as particle strength increase, and finally an expression to represent the particle-matrix compatibility was summed up.

向兆兵, 聂俊辉, 魏少华 .

增强颗粒与基体适配性对颗粒增强铝基复合材料强化机理的影响

[J]. 材料研究学报, 2015, 29(10): 744

DOI      [本文引用: 1]

用粉末冶金法制备了分别用Al<sub>2</sub>O<sub>3</sub>、SiC颗粒增强的颗粒体积分数为25%的6061Al基复合材料, 在不同温度对其进行固溶-时效热处理, 通过拉伸曲线分析和断口SEM分析研究了增强颗粒与基体适配性对颗粒增强铝基复合材料拉伸性能的影响。结果表明, 低强度Al<sub>2</sub>O<sub>3</sub>颗粒不适合用于增强高强度的6061Al基体; 研究了增强颗粒与基体适配性对颗粒增强铝基复合材料强化机制的影响, 发现主要通过影响应力传递机制来影响复合材料性能; 揭示了适配性与增强颗粒开裂、复合材料屈服之间的关系, 得出增强颗粒相对于基体强度越高, 颗粒开裂越少, 并总结了一种表示增强颗粒与基体适配性关系的方法。

Ye T, Xu Y, Ren J.

Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite

[J]. Mater. Sci. Eng. A, 2019, 753: 146

[本文引用: 1]

Wang H M, Su W X, Liu J Q, et al.

Microstructure and properties of FeCoNiCrMn and Al2O3 hybrid particle-reinforced aluminum matrix composites fabricated by microwave sintering

[J]. J. Mater. Res. Technol., 2023, 24: 8618

Farid W, Bah T A, Kong C, et al.

A novel way to fabricate high elastic modulus and high strength of TiC reinforced aluminum matrix composite

[J]. Mater. Manuf. Process., 2023, 38(14): 1785

Liu R F, Wang W X, Zhao W.

Microstructure and mechanical properties of micro/nano B4C particle reinforced 6061Al matrix composites

[J]. Acta Mater. Compo. Sin., 2021, 38(10): 3394

刘瑞峰, 王文先, 赵 威.

微/纳B4C增强6061Al复合材料微观结构及力学性能

[J]. 复合材料学报, 2021, 38(10): 3394

Zhuang W, Yang H, Yang W, et al.

Microstructure, tensile properties, and wear resistance of in situ TiB2/6061 composites prepared by high energy ball milling and stir casting

[J]. J. Mater. Eng. Perform., 2021, 30(10): 7730

[本文引用: 1]

Li Q, Bao X, Zhao S, et al.

The influence of AlFeNiCrCoTi high-entropy alloy on microstructure, mechanical properties and tribological behaviors of aluminum matrix composites

[J]. Int. J. Metalcast., 2020, 15(1): 281

[本文引用: 1]

Li J, Nie J, Xu Q, et al.

Enhanced mechanical properties of a novel heat resistant Al-based composite reinforced by the combination of nano-aluminides and submicron TiN particles

[J]. Mater. Sci. Eng. A, 2020, 770: 138488

Duan M G, Li C, Li B, et al.

Study on the high cycle fatigue properties of in-situ TiB2/7050 composite

[J]. Acta Mater. Compo. Sin., 2023, 40(11): 6430

[本文引用: 1]

段敏鸽, 李 晨, 李 彪 .

原位自生TiB2/7050铝基复合材料高周疲劳特性

[J]. 复合材料学报, 2023, 40(11): 6430

[本文引用: 1]

Zhang Y, Zuo T T, Tang Z, et al.

Microstructures and properties of high-entropy alloys

[J]. Prog. Mater. Sci., 2014, 61: 1

[本文引用: 1]

Kareem S A, Anaele J U, Aikulola E O, et al.

Aluminium matrix composites reinforced with high entropy alloys: A comprehensive review on interfacial reactions, mechanical, corrosion, and tribological characteristics

[J]. J. Mater. Res. Technol., 2024, 30: 8161

[本文引用: 1]

Yang X, Liang Z, Wang L W, et al.

Interface structure and tensile behavior of high entropy alloy particles reinforced Al matrix composites by spark plasma sintering

[J]. Mater. Sci. Eng. A, 2022, 860: 144273

[本文引用: 1]

Wang P J, Ai T T, Liao Z N, et al.

Microstructure and mechanical properties of high-entropy alloys (FeNiCoCr)100 - x Al x (x = 0, 5) prepared by hot-pressing sintering

[J]. Chin. J. Mater. Res., 2022, 36(11): 871

王沛锦, 艾桃桃, 廖仲尼 .

热压烧结(FeNiCoCr)100 - x Al x (x = 0, 5)高熵合金的微观组织及力学性能

[J]. 材料研究学报, 2022, 36(11): 871

DOI     

采用低能球磨-热压烧结制备了(FeNiCoCr)<sub>100-</sub><sub>x</sub> Al <sub>x</sub> (x=0、5)高熵合金,并对其进行时效处理,研究了合金的组织结构与力学性能。结果表明:烧结态及时效态合金的微观组织均由FCC相和少量BCC相构成,其中FCC相中均存在孪晶,且未添加Al的合金中孪晶比例相对较高;添加Al的合金中BCC相较高,且时效处理后出现了大量小角度晶界。时效态FeNiCoCr合金具有最佳的综合性能,其压缩真屈服强度达545 MPa,弯曲强度和断裂韧性分别为1342±20 MPa和32.5±2.0 MPa·m<sup>1/2</sup>,优异的力学性能归因于FCC相中退火孪晶的形成以及BCC相的析出。

He Y Q, Su Q H, Huan C B, et al.

Preparation and properties of AlFeNiCrCoTi0.5 high entropy alloy particle reinforced 6061 aluminum matrix composites

[J]. J. Mater. Eng., 2023, 51(3): 67

[本文引用: 1]

贺毅强, 苏前航, 郇昌宝 .

AlFeNiCrCoTi0.5高熵合金颗粒增强6061铝基复合材料的制备与性能

[J]. 材料工程, 2023, 51(3): 67

DOI      [本文引用: 1]

采用机械合金化工艺制备AlFeNiCrCoTi<sub>0.5</sub>高熵合金粉末,通过先冷等静压、后等径角挤压的方法制备(AlFeNiCrCoTi<sub>0.5</sub>)<sub>p</sub>/6061Al复合材料。研究AlFeNiCrCoTi<sub>0.5</sub>高熵合金粉末各单质金属间的合金化行为及球磨时间对合金粉末形貌的影响,分析不同体积分数对(AlFeNiCrCoTi<sub>0.5</sub>)<sub>p</sub>/6061Al复合材料的组织和性能。结果表明:AlFeNiCrCoTi<sub>0.5</sub>金属粉末合金化时间随单质金属的熔点提高而增加,且金属熔点越高,其合金化越先进行,当球磨时间达到70 h时,AlFeNiCrCoTi<sub>0.5</sub>金属粉末完全合金化,形成FCC+BCC的双相固溶体结构。6061Al基体与AlFeNiCrCoTi<sub>0.5</sub>高熵合金增强体之间形成元素相互浸渗的过渡层。随着增强体体积分数的提高,增强体聚集行为加剧,抗拉强度提高,塑性降低。当体积分数为10%时,复合材料获得良好的综合性能,与6061Al基体相比,抗拉强度提高21.8%,伸长率降低7.4%。T6处理后其抗拉强度和伸长率分别为284.05 MPa和11.51%。

Yang X, Zhang H, Dong P, et al.

A study on the formation of multiple intermetallic compounds of friction stir processed high entropy alloy particles reinforced Al matrix composites

[J]. Mater. Charact., 2022, 183: 111646

[本文引用: 1]

Lu T, He T, Li Z, et al.

Microstructure, mechanical properties and machinability of particulate reinforced Al matrix composites: a comparative study between SiC particles and high-entropy alloy particles

[J]. J. Mater. Res. Technol, 2020, 9(6): 13646

[本文引用: 1]

Luo K, Lei G, Liu S, et al.

Mechanical properties and microstructure evolution of cryorolled AlCoCrFeNi-reinforced aluminum matrix composites tensile tested at room and cryogenic temperatures

[J]. Metall. Mater. Trans. A, 2023, 54(6): 2292

[本文引用: 2]

Zhang Y, Luo K, Lei G, et al.

Interfacial characteristics and enhanced mechanical properties of Al0.5CoCrFeNi high-entropy alloy particles reinforced Al matrix composites

[J]. Metall. Mater. Trans. A, 2022, 53(12): 4161

[本文引用: 1]

Soorya Prakash K, Gopal P M, Purusothaman M, et al.

Fabrication and characterization of metal-high entropy alloy composites

[J]. Int. J. Metalcast., 2019, 14(2): 547

[本文引用: 1]

Gao J, Wang X, Zhang S, et al.

Producing of FeCoNiCrAl high-entropy alloy reinforced Al composites via friction stir processing technology

[J]. Int. J. Adv. Manuf. Tech., 2020, 110(1-2): 569

[本文引用: 1]

Li P, Tong Y, Wang X, et al.

Microstructures and mechanical properties of AlCoCrFeNi2.1/6061-T6 aluminum-matrix composites prepared by friction stir processing

[J]. Mater. Sci. Eng. A, 2023, 863: 144544

[本文引用: 1]

Yuan Z, Tian W, Li F, et al.

Microstructure and properties of high-entropy alloy reinforced aluminum matrix composites by spark plasma sintering

[J]. J. Alloy. Compd., 2019, 806: 901

[本文引用: 1]

Liu Y, Chen J, Li Z, et al.

Formation of transition layer and its effect on mechanical properties of AlCoCrFeNi high-entropy alloy/Al composites

[J]. J. Alloy. Compd., 2019, 780: 558

[本文引用: 1]

Liu Y, Chen J, Wang X, et al.

Significantly improving strength and plasticity of Al-based composites by in-situ formed AlCoCrFeNi core-shell structure

[J]. J. Mater. Res. Technol., 2021, 15: 4117

[本文引用: 1]

Wang Y, Chen Y, Xie J, et al.

High entropy alloy reinforced aluminum matrix composites prepared by novel rotation friction extrusion process: Microstructure and mechanical properties

[J]. Mater. Sci. Eng. A, 2022, 854: 143789

Yuan Z, Tian W, Li F, et al.

Effect of heat treatment on the interface of high-entropy alloy particles reinforced aluminum matrix composites

[J]. J. Alloy. Compd., 2020, 822: 153658

[本文引用: 1]

Cheng H, Xie Y, Tang Q, et al.

Microstructure and mechanical properties of FeCoCrNiMn high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering

[J]. Trans. Nonferrous Met. Soc. China, 2018, 28(7): 1360

[本文引用: 1]

Ding F J, Jia X D, Hong T J, et al.

Influence of different heat treatment processes on plasticity and hardness of 6061 aluminum alloy

[J]. Mater. Rev., 2021, 35(08): 8108-8115+8120

[本文引用: 1]

丁凤娟, 贾向东, 洪腾蛟 .

不同热处理工艺对6061铝合金塑性和硬度的影响

[J]. 材料导报, 2021, 35(08): 8108-8115+8120

[本文引用: 1]

Han P, Wang W, Liu Z, et al.

Modification of cold-sprayed high-entropy alloy particles reinforced aluminum matrix composites via friction stir processing

[J]. J. Alloy. Compd., 2022, 907: 164426

[本文引用: 1]

Wan B, Lu T, Xu X, et al.

Achieving high strength and ductility in high-entropy alloy particle reinforced Al matrix composites with proper proportion of layered structures

[J]. Mater. Charact., 2023, 205: 113354

[本文引用: 2]

Luo K, Liu S, Xiong H, et al.

Mechanical properties and strengthening mechanism of aluminum matrix composites reinforced by high-entropy alloy particles

[J]. Met. Mater. Int., 2022, 28(11): 2811

[本文引用: 1]

Zhang Y, Li X, Gu H, et al.

Insight of high-entropy alloy particles-reinforced 2219 Al matrix composites via the ultrasonic casting technology

[J]. Mater. Charact., 2021, 182: 111548

[本文引用: 2]

Tao R, Zhao Y T, Chen G, et al.

Microstructure and properties of in-situ ZrB2 np/AA6111 composites synthesized under an electromagnetic field

[J]. Acta Metall. Sin., 2019, 55(1): 160

[本文引用: 1]

陶 然, 赵玉涛, 陈 刚 .

电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究

[J]. 金属学报, 2019, 55(1): 160

[本文引用: 1]

/