Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (5): 362-370    DOI: 10.11901/1005.3093.2024.145
  研究论文 本期目录 | 过刊浏览 |
热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应
李海斌(), 徐惠婷, 唐伟, 吕海波, 帅美荣
太原科技大学 重型机械教育部工程研究中心 先进不锈钢国家重点实验室 太原 030024
Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel
LI Haibin(), XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong
Heavy Machinery Engineering Research Center of Education Ministry, Advanced Stainless Steel State Key Laboratory, Taiyuan University of Science and Technology, Taiyuan 030024, China
引用本文:

李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.
Haibin LI, Huiting XU, Wei TANG, Haibo LV, Meirong SHUAI. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. Chinese Journal of Materials Research, 2025, 39(5): 362-370.

全文: PDF(16575 KB)   HTML
摘要: 

针对复合板界面的氧化失效问题,研究了两道次真空热轧Q235碳钢/304不锈钢复合板结合界面以及奥氏体侧晶界在电解抛光后的形貌演变,同时结合复合界面微孔电解过程反应机理,深入探究不同轧制工况下的界面元素分布、微孔洞生长、晶界能以及气体压力之间的映射关系。结果表明:双道次轧制压下率为30%/10%时,界面几乎无微孔洞缺陷;同时奥氏体晶界电解后形成凹槽,晶界宽度约2 μm。当第二道次压下率增至20%和25%,奥氏体晶界宽度分别减小至约1.8 μm和1.3 μm,晶界能随之降低。当双道次轧制压下率为35%/25%时,奥氏体晶界宽度又增长至1.5 μm。结合界面区不锈钢表层的孔洞以及奥氏体晶界电解后形成连接凹槽,这主要归功于界面微孔毛细效应致使孔洞内壁快速发生电化学氧化效应,反应速率与析出气体的压力值呈正相关,与微孔直径呈负相关;且孔洞数量越多,腐蚀越快,形成平行于轧向的凹槽越宽。

关键词 金属材料真空轧制复合不锈钢复合板界面毛细效应附加压力    
Abstract

Pointing to the oxidation failure of the interface of the composite plate, the plates of Q235 carbon steel and 304 stainless steel were prepared and rolled by a two-high mill, and the microstructure evolution of the bonding interface and the austenite grain boundary were studied after the electrolytic polishing in this paper. At the same time, combined with the reaction mechanism of the micro-pore electrolysis process, the mapping relationships between interface element distribution, micro-pore growth, grain boundary energy and gas pressure under different rolling conditions were also deeply explored.The results show that when the reduction rate of double-pass rolling is 30% / 10%, after taking electrolysis there is almost no micro-hole defect at the interface. However, the austenite grain boundaries become a groove with about 2 μm width. When the second pass reduction rate increases to 20% and 25%, the width of austenite grain boundaries decreases to about 1.8 μm and 1.3 μm, respectively, and the energy of grain boundaries decreases accordingly. When the two-pass rolling reduction rate is 35% / 25%, the width of austenite grain boundaries inversely increases to 1.5 μm. The pores on the interface and the austenite grain boundaries also change into the connecting grooves after electrolysis.This is mainly due to the capillary effect of the interface micro-pores, which leads to the rapid electro-chemical oxidation effect on the inner wall of the pores. The reaction rate is positively correlated with the pressure value from the precipitated gas, and negatively correlated with the pore diameter. The more the number of holes, the faster the corrosion, and the wider the groove paralleling to the rolling direction.

Key wordsmetallic materials    vacuum rolling cladding    Stainless steel composite plate    interface    capillary effect    additional pressure
收稿日期: 2024-04-01     
ZTFLH:  TH142.1  
基金资助:国家自然科学基金(51875382);山西省重点研发计划项目(202302150401003);山西省专利转化项目(202403006);太原市关键核心技术攻关“揭榜挂帅”项目(2024TYJB0114);忻州市重点研发计划(20240103);太原科技大学研究生创新项目(SY2023022)
通讯作者: 李海斌,副教授,lihaibin@tyust.edu.cn,研究方向为轧制装备与工艺
Corresponding author: LI Haibin, Tel: 13633473659, E-mail: lihaibin@tyust.edu.cn
作者简介: 李海斌,男,1974年生,博士
MaterialFeCrNiCMnSiPS
304 stainless steel68.9518.58.50.0252.02.00.0450.05
Q235 carbon steel98.91--0.020.50.30.0450.05
表1  304不锈钢和Q235碳钢的化学成分
图1  硝酸酒精腐蚀后复合板界面的形貌
图2  电解抛光后复合界面的组织
图3  电解抛光后界面物质的氧含量
图4  复合板界面的IPF图和晶界图
图5  复合板不锈钢侧的晶界取向差分布
Sample(a)(b)(c)(d)
ΔS/μm2060.662.387.7
γ /J·m-20.346K0.271K0.222K0.264K
Ps0.21P00.2106P00.2108P00.2115P0
表2  界面物质的成分和微孔的参数
图6  ε和L与γ的关系
图7  D和Ps与ΔS的关系
1 Fan J H, Li P F, Liang X J, et al. Interface evolution during rolling of Ni-clad stainless steel plate [J]. Chin. J. Mater. Res., 2021, 35(7): 493
doi: 10.11901/1005.3093.2020.168
1 范金辉, 李鹏飞, 梁晓军 等. 镍-不锈钢复合板轧制过程中界面的结合机制 [J]. 材料研究学报, 2021, 35(7): 493
doi: 10.11901/1005.3093.2020.168
2 Hwang Y M, Tzou G Y. An analytical approach to asymmetrical cold- and hot-rolling of clad sheet using the slab method [J]. J. Mater. Process. Technol., 1996, 62(1-3): 249
3 Dhib Z, Guermazi N, Gaspérini M, et al. Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: microstructure and mechanical properties before and after welding [J]. Mater. Sci. Eng., 2016, 656A: 130
4 Huang Q, Yang X, Ma L, et al. Interface-correlated characteristics of stainless steel/carbon steel plate fabricated by AAWIV and hot rolling [J]. J. Iron. Steel. Res. Int., 2014, 21(10): 931
5 Li T M, Ding W H, Ming Y F, et al. Influence of rolling reduction on interfacial bonding performance of carbon steel/stainless steel clad plate [J]. Mater. Mech. Eng., 2022, 45(12): 19
5 李天妹, 丁文红, 明亚飞 等. 轧制压下率对碳钢/不锈钢复合板界面结合性能的影响 [J]. 机械工程材料, 2022, 45(12): 19
6 Ji C, Niu H, Li Z, et al. Deformation law and bonding mechanism of 45 carbon steel/316L stainless steel cladding tubes fabricated by three-roll skew rolling bonding process [J]. J. Mater. Process. Technol., 2024, 325: 118277
7 Wang S, Liu B X, Chen C X, et al. Microstructure, mechanical properties and interface bonding mechanism of hot-rolled stainless steel clad plates at different rolling reduction ratios [J]. J. Alloy. Compd., 2018, 766: 517
8 Liu B X, Yin F X, Dai X L, et al. The tensile behaviors and fracture characteristics of stainless steel clad plates with different interfacial status [J]. Mater. Sci. Eng., 2017, 679A: 172
9 Liu B X, Wang S, Chen C X, et al. Interface characteristics and fracture behavior of hot rolled stainless steel clad plates with different vacuum degrees [J]. Appl. Surf. Sci., 2019, 463: 121
doi: 10.1016/j.apsusc.2018.08.221
10 Aristeidakis J S, Haidemenopoulos G N. Constitutive and transformation kinetics modeling of ε-, α′-Martensite and mechanical twinning in steels containing austenite [J]. Acta Mater., 2022, 228: 117757
11 Aristeidakis J S, Haidemenopoulos G N. Composition and processing design of medium-Mn steels based on CALPHAD, SFE modeling, and genetic optimization [J]. Acta Mater., 2020, 193: 291
doi: 10.1016/j.actamat.2020.03.052
12 Lin Z, Liu B, Yu W, et al. The evolution behavior and constitution characteristics of interfacial oxides in the hot-rolled stainless steel clad plate [J]. Corros. Sci., 2023, 211: 110866
13 Zhu Z, He Y, Zhang X, et al. Effect of interface oxides on shear properties of hot-rolled stainless steel clad plate [J]. Mater. Sci. Eng., 2016, 669A: 344
14 Yang D H. Evolution mechanism and process control of interfacial products with Ti-steel clad plate by vacuum rolling cladding [D]. Shenyang: Northeastern University, 2019
14 杨德翰. 真空热轧钛/钢复合板的界面产物演变机理及工艺控制 [D]. 东北大学, 2019
15 Wang G L. Research on interface inclusions' evolution mechanism and process control of vacuum hot roll-cladding [D]. Shenyang: Northeastern University, 2013
15 王光磊. 真空热轧复合界面夹杂物的生成演变机理与工艺控制研究 [D]. 沈阳: 东北大学, 2013
16 Bouaziz O, Masse J P, Petitgand G, et al. A novel strong and ductile TWIP/martensite steel composite [J]. Adv. Eng. Mater., 2016, 18(1): 56
17 Han J, Niu H, Li S, et al. Effect of mechanical surface treatment on the bonding mechanism and properties of cold-rolled Cu/Al clad plate [J]. Chin. J. Mech. Eng-En., 2020, 33: 1
18 Yang Y, Jiang Z, Chen Y, et al. Interfacial microstructure and strengthening mechanism of stainless steel/carbon steel laminated composite fabricated by liquid-solid bonding and hot rolling [J]. Mater. Charact., 2022, 191: 112122
19 Yanushkevich Z, Belyakov A, Kaibyshev R. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273 K [J]. Acta Mater., 2015, 82: 244
20 Carreño F, Chao J, Pozuelo M, et al. Microstructure and fracture properties of an ultrahigh carbon steel-mild steel laminated composite [J]. Scr. Mater., 2003, 48(8): 1135
21 Luo Z A, Xie G M, Wang G L, et al. Effect of interfacial micro‐structure on mechanical properties of vacuum rolling clad pure tita‐nium/high strength low alloy steel [J]. Chin. J. Mater. Res., 2013, 27(6): 569
21 骆宗安, 谢广明, 王光磊 等. 界面微观组织对真空轧制复合纯钛/低合金高强钢界面力学性能的影响 [J]. 材料研究学报, 2013, 27(6): 569
22 Li H B, Zhang H M, Wang J M, et al. Interface layer deformation thickening analysis of hot rolling carbon steel-stainless steel clad plate [J]. Mater. Res. Express., 2020, 6(12): 1265i3
23 Li H B, Huang Q X, Zhou C L, et al. Stainless steel microstructural evolution of hot-rolled clad plate[J]. Mat. Sci., 2016, 22(4): 495
24 Xu Y T, Liu Z J, Wang C. Research on industrial electrolytic nickel plate by large area EBSD method [J]. Rare. Metal. Mat. Eng., 2021, 50(12): 4372
24 徐仰涛, 刘志健, 王 超. 大面积EBSD方法对电解镍板的研究 [J]. 稀有金属材料与工程, 2021, 50(12): 4372
25 Pan J S, Gong J M, Tian M B. Fundamentals of Materials Science [M]. Beijing: Tsinghua University Press, 1998: 419
25 潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 1998: 419
26 Mas F, Tassin C, Valle N, et al. Metallurgical characterization of coupled carbon diffusion and precipitation in dissimilar steel welds [J]. J. Mater. Sci., 2016, 51: 4864
27 Yang X T, Fu X Y, Feng L, et al. NiCoCrAlY coating of in-situ synthesis by vacuum diffusion and its oxidation resistance [J]. Rare. Met. Mater. Eng., 2020, 49(5):1750
27 杨效田, 付小月, 冯 力 等. 真空扩散原位合成NiCoCrAlY涂层及其抗氧化性能 [J]. 稀有金属材料与工程, 2020, 49(5): 1750
28 Liu B X, Wang S, Fang W, et al. Meso and microscale clad interface characteristics of hot-rolled stainless steel clad plate [J]. Mater. Charact., 2019, 148: 17
doi: 10.1016/j.matchar.2018.12.008
29 Ma Y J, Liu X J. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. J. CIESC. J., 2022, 73(9): 4103
29 马语峻, 刘向军. 多孔陶瓷膜烟气水分回收理论与模型研究 [J]. 化工学报, 2022, 73(9): 4103
doi: 10.11949/0438-1157.20220431
30 Cheng H F, Xie D J, Zhou K, et al. Chromium oxide ink-jet printing ink and preparation method and application thereof [P]. Chin Pat., 202110137123.X, 2021
30 程海峰, 谢东津, 周 珅 等. 一种氧化铬喷墨打印墨水及其制备方法与用途 [P]. 中国专利, 202110137123.X, 2021)
[1] 邱玮, 李玉林, 闫瑞, 李雅文, 陈维, 甘浪, 任延杰, 陈荐. Al对镁空气电池用挤压态Mg-Al-Ca-Mn合金阳极腐蚀和放电性能的影响[J]. 材料研究学报, 2025, 39(5): 389-400.
[2] 任学昌, 安菊, 付宁, 姚小庆, 杨镇瑜, 陈泓锦. 在模拟太阳光下溶剂热时长对MIL-88A(Fe)活化过一硫酸盐降解罗丹明B催化性能的影响[J]. 材料研究学报, 2025, 39(5): 329-342.
[3] 吴玉程, 左彤, 谭晓月, 朱晓勇, 刘家琴. 第一壁自钝化W-Cr-Zr合金的氧化行为和氧化层结构[J]. 材料研究学报, 2025, 39(5): 343-352.
[4] 符纯国, 徐世伟, 杨晓益, 李萌蘖. 焊接热源模式对5083-H111铝合金接头性能的影响[J]. 材料研究学报, 2025, 39(4): 305-313.
[5] 李庆鹏, 刘佳兴, 安晓云, 李永志, 高萌, 孙洪涛, 王娜. 镀锌紧固件表面硅烷转化膜的制备和性能[J]. 材料研究学报, 2025, 39(4): 296-304.
[6] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[7] 胥聪敏, 孙姝雯, 朱文胜, 陈志强, 李城臣. 三元复配杀菌剂对P110钢腐蚀行为的影响[J]. 材料研究学报, 2025, 39(4): 281-288.
[8] 李红蕾, 刘闯, 卢政伟, 褚天义, 陈育秋, 姜肃猛, 宫骏, 裴志亮. Ni-Al2O3/Diamond复合涂层的制备和性能[J]. 材料研究学报, 2025, 39(4): 314-320.
[9] 彭怡和, 欧宝立, 彭勇洁, 温乜一, 程天宇, 陈迪名. CeO2-GO/EP防腐复合涂层的制备和性能[J]. 材料研究学报, 2025, 39(4): 259-271.
[10] 张慧芳, 吴浩, 肖传民, 李奇, 谢君, 李金国, 王振江, 于金江. 热处理对一种 γʹ 沉淀强化钴基高温合金拉伸性能的影响[J]. 材料研究学报, 2025, 39(3): 198-206.
[11] 胡彭钦, 王栋, 卢玉章, 张健. 热工艺对一种镍基单晶高温合金蠕变性能的影响[J]. 材料研究学报, 2025, 39(3): 161-171.
[12] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[13] 胡明, 张新全, 李伟强, 杨晓康, 黄金湖, 雷晓飞, 邱建科, 董利民. FeCu的含量对TC10钛合金棒材力学性能的影响[J]. 材料研究学报, 2025, 39(3): 217-224.
[14] 于兴福, 西克宇, 张宏伟, 王全振, 郝天赐, 郑冬月, 苏勇. 离子渗氮后的扩散处理对7Cr7Mo2V2Si冷作模具钢性能的影响[J]. 材料研究学报, 2025, 39(3): 225-232.
[15] 冉子祚, 张爽, 苏兆翼, 王阳, 邹存磊, 赵亚军, 王增睿, 姜薇薇, 董晨希, 董闯. 基于团簇式的316不锈钢成分优化及其实验验证[J]. 材料研究学报, 2025, 39(3): 207-216.