|
|
热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应 |
李海斌( ), 徐惠婷, 唐伟, 吕海波, 帅美荣 |
太原科技大学 重型机械教育部工程研究中心 先进不锈钢国家重点实验室 太原 030024 |
|
Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel |
LI Haibin( ), XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong |
Heavy Machinery Engineering Research Center of Education Ministry, Advanced Stainless Steel State Key Laboratory, Taiyuan University of Science and Technology, Taiyuan 030024, China |
引用本文:
李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.
Haibin LI,
Huiting XU,
Wei TANG,
Haibo LV,
Meirong SHUAI.
Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. Chinese Journal of Materials Research, 2025, 39(5): 362-370.
1 |
Fan J H, Li P F, Liang X J, et al. Interface evolution during rolling of Ni-clad stainless steel plate [J]. Chin. J. Mater. Res., 2021, 35(7): 493
doi: 10.11901/1005.3093.2020.168
|
1 |
范金辉, 李鹏飞, 梁晓军 等. 镍-不锈钢复合板轧制过程中界面的结合机制 [J]. 材料研究学报, 2021, 35(7): 493
doi: 10.11901/1005.3093.2020.168
|
2 |
Hwang Y M, Tzou G Y. An analytical approach to asymmetrical cold- and hot-rolling of clad sheet using the slab method [J]. J. Mater. Process. Technol., 1996, 62(1-3): 249
|
3 |
Dhib Z, Guermazi N, Gaspérini M, et al. Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: microstructure and mechanical properties before and after welding [J]. Mater. Sci. Eng., 2016, 656A: 130
|
4 |
Huang Q, Yang X, Ma L, et al. Interface-correlated characteristics of stainless steel/carbon steel plate fabricated by AAWIV and hot rolling [J]. J. Iron. Steel. Res. Int., 2014, 21(10): 931
|
5 |
Li T M, Ding W H, Ming Y F, et al. Influence of rolling reduction on interfacial bonding performance of carbon steel/stainless steel clad plate [J]. Mater. Mech. Eng., 2022, 45(12): 19
|
5 |
李天妹, 丁文红, 明亚飞 等. 轧制压下率对碳钢/不锈钢复合板界面结合性能的影响 [J]. 机械工程材料, 2022, 45(12): 19
|
6 |
Ji C, Niu H, Li Z, et al. Deformation law and bonding mechanism of 45 carbon steel/316L stainless steel cladding tubes fabricated by three-roll skew rolling bonding process [J]. J. Mater. Process. Technol., 2024, 325: 118277
|
7 |
Wang S, Liu B X, Chen C X, et al. Microstructure, mechanical properties and interface bonding mechanism of hot-rolled stainless steel clad plates at different rolling reduction ratios [J]. J. Alloy. Compd., 2018, 766: 517
|
8 |
Liu B X, Yin F X, Dai X L, et al. The tensile behaviors and fracture characteristics of stainless steel clad plates with different interfacial status [J]. Mater. Sci. Eng., 2017, 679A: 172
|
9 |
Liu B X, Wang S, Chen C X, et al. Interface characteristics and fracture behavior of hot rolled stainless steel clad plates with different vacuum degrees [J]. Appl. Surf. Sci., 2019, 463: 121
doi: 10.1016/j.apsusc.2018.08.221
|
10 |
Aristeidakis J S, Haidemenopoulos G N. Constitutive and transformation kinetics modeling of ε-, α′-Martensite and mechanical twinning in steels containing austenite [J]. Acta Mater., 2022, 228: 117757
|
11 |
Aristeidakis J S, Haidemenopoulos G N. Composition and processing design of medium-Mn steels based on CALPHAD, SFE modeling, and genetic optimization [J]. Acta Mater., 2020, 193: 291
doi: 10.1016/j.actamat.2020.03.052
|
12 |
Lin Z, Liu B, Yu W, et al. The evolution behavior and constitution characteristics of interfacial oxides in the hot-rolled stainless steel clad plate [J]. Corros. Sci., 2023, 211: 110866
|
13 |
Zhu Z, He Y, Zhang X, et al. Effect of interface oxides on shear properties of hot-rolled stainless steel clad plate [J]. Mater. Sci. Eng., 2016, 669A: 344
|
14 |
Yang D H. Evolution mechanism and process control of interfacial products with Ti-steel clad plate by vacuum rolling cladding [D]. Shenyang: Northeastern University, 2019
|
14 |
杨德翰. 真空热轧钛/钢复合板的界面产物演变机理及工艺控制 [D]. 东北大学, 2019
|
15 |
Wang G L. Research on interface inclusions' evolution mechanism and process control of vacuum hot roll-cladding [D]. Shenyang: Northeastern University, 2013
|
15 |
王光磊. 真空热轧复合界面夹杂物的生成演变机理与工艺控制研究 [D]. 沈阳: 东北大学, 2013
|
16 |
Bouaziz O, Masse J P, Petitgand G, et al. A novel strong and ductile TWIP/martensite steel composite [J]. Adv. Eng. Mater., 2016, 18(1): 56
|
17 |
Han J, Niu H, Li S, et al. Effect of mechanical surface treatment on the bonding mechanism and properties of cold-rolled Cu/Al clad plate [J]. Chin. J. Mech. Eng-En., 2020, 33: 1
|
18 |
Yang Y, Jiang Z, Chen Y, et al. Interfacial microstructure and strengthening mechanism of stainless steel/carbon steel laminated composite fabricated by liquid-solid bonding and hot rolling [J]. Mater. Charact., 2022, 191: 112122
|
19 |
Yanushkevich Z, Belyakov A, Kaibyshev R. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273 K [J]. Acta Mater., 2015, 82: 244
|
20 |
Carreño F, Chao J, Pozuelo M, et al. Microstructure and fracture properties of an ultrahigh carbon steel-mild steel laminated composite [J]. Scr. Mater., 2003, 48(8): 1135
|
21 |
Luo Z A, Xie G M, Wang G L, et al. Effect of interfacial micro‐structure on mechanical properties of vacuum rolling clad pure tita‐nium/high strength low alloy steel [J]. Chin. J. Mater. Res., 2013, 27(6): 569
|
21 |
骆宗安, 谢广明, 王光磊 等. 界面微观组织对真空轧制复合纯钛/低合金高强钢界面力学性能的影响 [J]. 材料研究学报, 2013, 27(6): 569
|
22 |
Li H B, Zhang H M, Wang J M, et al. Interface layer deformation thickening analysis of hot rolling carbon steel-stainless steel clad plate [J]. Mater. Res. Express., 2020, 6(12): 1265i3
|
23 |
Li H B, Huang Q X, Zhou C L, et al. Stainless steel microstructural evolution of hot-rolled clad plate[J]. Mat. Sci., 2016, 22(4): 495
|
24 |
Xu Y T, Liu Z J, Wang C. Research on industrial electrolytic nickel plate by large area EBSD method [J]. Rare. Metal. Mat. Eng., 2021, 50(12): 4372
|
24 |
徐仰涛, 刘志健, 王 超. 大面积EBSD方法对电解镍板的研究 [J]. 稀有金属材料与工程, 2021, 50(12): 4372
|
25 |
Pan J S, Gong J M, Tian M B. Fundamentals of Materials Science [M]. Beijing: Tsinghua University Press, 1998: 419
|
25 |
潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 1998: 419
|
26 |
Mas F, Tassin C, Valle N, et al. Metallurgical characterization of coupled carbon diffusion and precipitation in dissimilar steel welds [J]. J. Mater. Sci., 2016, 51: 4864
|
27 |
Yang X T, Fu X Y, Feng L, et al. NiCoCrAlY coating of in-situ synthesis by vacuum diffusion and its oxidation resistance [J]. Rare. Met. Mater. Eng., 2020, 49(5):1750
|
27 |
杨效田, 付小月, 冯 力 等. 真空扩散原位合成NiCoCrAlY涂层及其抗氧化性能 [J]. 稀有金属材料与工程, 2020, 49(5): 1750
|
28 |
Liu B X, Wang S, Fang W, et al. Meso and microscale clad interface characteristics of hot-rolled stainless steel clad plate [J]. Mater. Charact., 2019, 148: 17
doi: 10.1016/j.matchar.2018.12.008
|
29 |
Ma Y J, Liu X J. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. J. CIESC. J., 2022, 73(9): 4103
|
29 |
马语峻, 刘向军. 多孔陶瓷膜烟气水分回收理论与模型研究 [J]. 化工学报, 2022, 73(9): 4103
doi: 10.11949/0438-1157.20220431
|
30 |
Cheng H F, Xie D J, Zhou K, et al. Chromium oxide ink-jet printing ink and preparation method and application thereof [P]. Chin Pat., 202110137123.X, 2021
|
30 |
程海峰, 谢东津, 周 珅 等. 一种氧化铬喷墨打印墨水及其制备方法与用途 [P]. 中国专利, 202110137123.X, 2021)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|