Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (12): 927-934    DOI: 10.11901/1005.3093.2024.521
  研究论文 本期目录 | 过刊浏览 |
β-ZnS透明陶瓷的制备及相生成机理
李泓霄, 李焕勇(), 张炫
西北工业大学材料学院 西安 710072
Preparation and Phase Formation Mechanism of β-ZnS Transparent Ceramics
LI Hongxiao, LI Huanyong(), ZHANG Xuan
School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

李泓霄, 李焕勇, 张炫. β-ZnS透明陶瓷的制备及相生成机理[J]. 材料研究学报, 2025, 39(12): 927-934.
Hongxiao LI, Huanyong LI, Xuan ZHANG. Preparation and Phase Formation Mechanism of β-ZnS Transparent Ceramics[J]. Chinese Journal of Materials Research, 2025, 39(12): 927-934.

全文: PDF(6701 KB)   HTML
摘要: 

用化学均相沉淀法合成出纳米β-ZnS粉体,以碱金属卤化物KX (X = Br、I、Cl)为添加剂,在830 ℃/30 MPa条件下将其热压制备不含非透明六方相的β-ZnS透明陶瓷并表征其相组成、微观形貌、成分分布和光致发光,研究了β-ZnS透明陶瓷的相生成机理。结果表明,KBr、KI烧结助剂形成的液相能促进β-ZnS晶粒的长大,还能抑制β-ZnS纳米粉体的尺寸诱导低温相变,避免六方α-ZnS相的形成;KCl能促进α-ZnS生成而不利于透明陶瓷的生成。根据实验结果以及Br-、I-和Cl-的离子半径提出了KX抑制β-ZnS纳米粉体发生低温相变的机理。

关键词 无机非金属材料ZnS透明陶瓷热压烧结低温相变烧结助剂    
Abstract

ZnS transparent ceramics with free wurtzite phase α-ZnS were successfully prepared through hot-pressing sintering by 30 MPa at 830 oC, using the as-synthesized β-ZnS nanopowders and KX (X = Br, I, Cl) as raw material. It was found that halides KX, as the additives, play the crucial role in the sintering process of ZnS transparent ceramics. Both halides KBr and KI not only promote the rapid growth of grain by generating a liquid phase, but also effectively inhibit the size-induced low-temperature phase transition of the nanopowder cubic phase β-ZnS to the hexagonal one. However, KCl promotes the formation of α-ZnS with an adverse impact on ZnS transparent ceramics. A mechanism of alkali metal halides KX inhibiting the size-induced low-temperature phase transition of ZnS nanoparticles was rationally proposed by combining X-ray diffraction results, microstructure, composition distribution and photoluminescence spectra of ZnS ceramics with the ionic radii of Br-, I-, and Cl-.

Key wordsinorganic non-metallic materials    ZnS transparent ceramics    hot-press sintering    low-temperature phase transition    sintering additive
收稿日期: 2024-12-31     
ZTFLH:  TB321  
基金资助:国家自然科学基金(51572220);陕西省自然科学基础研究计划(2021JM-057)
通讯作者: 李焕勇,副教授,lihuanyong@nwpu.edu.cn,研究方向为光学透明陶瓷材料
Corresponding author: LI Huanyong, Tel: 13572263608, E-mail: lihuanyong@nwpu.edu.cn
作者简介: 李泓霄,男,2000年生,硕士生
图1  ZnS纳米粉体的XRD谱和SEM照片
图2  添加不同量、不同KX (X = Br、I、Cl)的ZnS透明陶瓷的XRD谱
图3  添加不同量、不同KX (X = Br、I、Cl)制备的ZnS透明陶瓷的微观形貌
图4  KBr抑制纳米β-ZnS低温相变机理的示意图
图5  紫外光(365 nm)激发ZnS陶瓷的光致发光谱
图6  ZnS透明陶瓷(~1.0 mm)的红外透过光谱
[1] Xiao Z H, Yu S J, Li Y M, et al. Materials development and potential applications of transparent ceramics: a review [J]. Mater. Sci. Eng., 2020, 139R: 100518
[2] Durand G R, Hakmeh N, Dorcet V, et al. New insights in structural characterization of transparent ZnS ceramics hot-pressed from nanocrystalline powders synthesized by combustion method [J]. J. Eur. Ceram. Soc., 2019, 39(10): 3094
doi: 10.1016/j.jeurceramsoc.2019.03.033
[3] Choi B H, Kim D S, Lee K T, et al. Highly IR transparent ZnS ceramics sintered by vacuum hot press using hydrothermally produced ZnS nanopowders [J]. J. Am. Ceram. Soc., 2020, 103(4): 2663
doi: 10.1111/jace.v103.4
[4] Xu L G, Guo S, Ralchenko V, et al. Progress in infrared transparencies under opto electro thermo and mechanical environments [J]. Surf. Sci. Technol., 2023, 1(1): 2
doi: 10.1007/s44251-023-00002-9
[5] Li Y Y, Wu Y Q. Transparent and luminescent ZnS ceramics consolidated by vacuum hot pressing method [J]. J. Am. Ceram. Soc., 2015, 98(10): 2972
doi: 10.1111/jace.2015.98.issue-10
[6] Lee K T, Choi B H, Woo J U, et al. Microstructural and optical properties of the ZnS ceramics sintered by vacuum hot-pressing using hydrothermally synthesized ZnS powders [J]. J. Eur. Ceram. Soc., 2018, 38(12): 4237
doi: 10.1016/j.jeurceramsoc.2018.05.018
[7] Qadri S B, Skelton E F, Hsu D, et al. Size-induced transition-temperature reduction in nanoparticles of ZnS [J]. Phys. Rev., 1999, 60B(13) : 9191
[8] Li C Y, Pan Y B, Kou H M, et al. Densification behavior, phase transition, and preferred orientation of hot-pressed ZnS ceramics from precipitated nanopowders [J]. J. Am. Ceram. Soc., 2016, 99(9): 3060
doi: 10.1111/jace.2016.99.issue-9
[9] Li C Y, Xie T F, Dai J W, et al. Hot-pressing of zinc sulfide infrared transparent ceramics from nanopowders synthesized by the solvothermal method [J]. Ceram. Int., 2018, 44(1): 747
doi: 10.1016/j.ceramint.2017.09.242
[10] Yeo S Y, Kwon T H, Park C S, et al. Sintering and optical properties of transparent ZnS ceramics by pre-heating treatment temperature [J]. J. Electroceram., 2018, 41(1): 1
doi: 10.1007/s10832-018-0137-y
[11] Li H Y, Ren X Y, Xi P F, et al. Influence of NaX (X = Cl, Br, I) additive on phase composition, thermostability and high infrared performances of γ-La2S3 transparent ceramics [J]. Ceram. Int., 2020, 46(7): 9145
doi: 10.1016/j.ceramint.2019.12.164
[12] Huang F, Banfield J F. Size-dependent phase transformation kinetics in nanocrystalline ZnS [J]. J. Am. Chem. Soc., 2005, 127(12): 4523
pmid: 15783236
[13] Xie Y C, Wang C B, Tang Y Q. Dispersion capacities of KCl and NaCl in zeolites [J]. Acta Phy. Chim. Sin., 1993, 9(6): 735
[13] 谢有畅, 汪传宝, 唐有祺. KCl、NaCl在分子筛载体上的分散阈值研究 [J]. 物理化学学报, 1993, 9(6): 735
[14] Xie Y C, Tang Y Q, Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: applications to heterogeneous catalysis [J]. Adv. Catal., 1990, 37: 1
[15] Wang K X, Yang X W, Zhao B Y, et al. 7Li MAS NMR studies on LiCl/γ-Al2O3 [J]. Acta Phy. Chim. Sin., 1997, 13(3): 196
[15] 王凯旋, 杨夏万, 赵璧英 等. LiCl/γ-Al2O37Li MAS NMR研究 [J]. 物理化学学报, 1997, 13(3): 196
[16] Wachs I E. Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials [J]. Catal. Today, 2005, 100(1-2): 79
doi: 10.1016/j.cattod.2004.12.019
[17] Liang L H, Shen C M, Du S X, et al. Increase in thermal stability induced by organic coatings on nanoparticles [J]. Phys. Rev., 2004, 70B(20) : 205419
[18] Dick K, Dhanasekaran T, Zhang Z Y, et al. Size-dependent melting of silica-encapsulated gold nanoparticles [J]. J. Am. Chem. Soc., 2002, 124(10): 2312
pmid: 11878986
[19] Chen S, Liu W M. Preparation and characterization of surface-coated ZnS nanoparticles [J]. Langmuir, 1999, 15(23): 8100
doi: 10.1021/la9906875
[20] Zhang H Z, Huang F, Gilbert B, et al. Molecular dynamics simulations, thermodynamic analysis, and experimental study of phase stability of zinc sulfide nanoparticles [J]. J. Phys. Chem., 2003, 107B: 13051
[21] Tiwary C S, Sricastava C, Kumbhakar P. Onset of sphalerite to wurtzite transformation in ZnS nanoparticles [J]. J. Appl. Phys., 2011, 110(3): 034908
[22] Dutta B, Deb D, Bhattacharya S. Electroactive phase nucleation and isothermal crystallization kinetics in ionic liquid-functionalized ZnS nanoparticle-ingrained P(VDF-HFP) copolymer nanocomposites [J]. J. Mater. Sci., 2019, 54(4): 2990
doi: 10.1007/s10853-018-3027-4
[23] Prior K A, Bradford C, Davidson I A, et al. Metastable II-VI sulphides: Growth, characterization and stability [J]. J. Cryst. Growth, 2011, 323(1): 114121
[24] Gupta S K, Mao Y B. Recent developments on molten salt synthesis of inorganic nanomaterials: a review [J]. J. Phys. Chem., 2021, 125C(12) : 6508
[25] Sahraei R, Aval G M, Goudarzi A. Compositional, structural, and optical study of nanocrystalline ZnS thin films prepared by a new chemical bath deposition route [J]. J. Alloy. Compd., 2008, 466(1-2): 488
doi: 10.1016/j.jallcom.2007.11.127
[26] Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-Free nanocrystals [J]. Science, 1998, 281(5379): 969
pmid: 9703506
[27] Hapiuk D, Masenelli B, Masenelli-Varlot K, et al. Oriented attachment of ZnO nanocrystals [J]. J. Phys. Chem., 2013, 117C(19) : 10220
[28] Sarkar H, Raj A, Kumar L, et al. Bulk-sized (~50 μm) faceted wurtzite crystals via non-classical mesocrystalline growth assembly [J]. J. Mater. Res., 2024, 39: 3294
doi: 10.1557/s43578-024-01463-w
[29] Ghica D, Nistor S V, Nistor L C, et al. Structural phase transformations in annealed cubic ZnS nanocrystals [J]. J. Nanopart. Res., 2011, 13(9): 4325
doi: 10.1007/s11051-011-0379-y
[30] Ooshita K, Inoue T, Sekiguchi T, et al. Flux growth of ZnS single crystals and their characterization [J]. J. Cryst. Growth, 2004, 267(1-2): 74
doi: 10.1016/j.jcrysgro.2004.03.067
[31] Zahabi S, Jamali H, Bakhshi S R, et al. Comparing infrared transmission of zinc sulfide nanostructure ceramic produced via hot pressure and spark plasma sintering methods [J]. Int. J. Appl. Ceram. Technol., 2022, 19(3): 1319
doi: 10.1111/ijac.v19.3
[32] Liu M Y, Wang S F, Wang C H, et al. Understanding of electronic and optical properties of ZnS with high concentration of point defects induced by hot pressing process: The first-principles calculations [J]. Comput. Mater. Sci., 2020, 174: 109492
doi: 10.1016/j.commatsci.2019.109492
[33] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Cryst. Sect. A: Found. Cryst., 1976, 32(5): 751
[34] Pelleg J. Diffusion in Ceramics [M]. Cham: Springer, 2016: 86
[35] Kang S J L. Sintering: Densification, Grain Growth and Microstructure [M]. Amsterdam: Butterworth-Heinemann, 2005: 173
[36] Parker S G, Pinnell J E. Molten flux growth of cubic zinc sulfide crystals [J]. J. Cryst. Growth, 1968, 3-4: 490
doi: 10.1016/0022-0248(68)90207-8
[37] Zhang W, Zeng X H, Liu H F, et al. Synthesis and investigation of blue and green emissions of ZnS ceramics [J]. J. Lumin., 2013, 134: 498
doi: 10.1016/j.jlumin.2012.07.039
[38] Singhal S, Chawla A K, Nagar S, et al. Photoluminescence measurements in the phase transition region of Zn1-x CdxS films [J]. J. Nanopart. Res., 2010, 12(4): 1415
doi: 10.1007/s11051-009-9687-x
[39] Hong J W, Jung W K, Choi D H. Effect of porosity and hexagonality on the infrared transmission of spark plasma sintered ZnS ceramics [J]. Ceram. Int., 2020, 46(10): 16285
doi: 10.1016/j.ceramint.2020.03.185
[40] Chlique C, Merdrignac-Conanec O, Hakmeh N, et al. Transparent ZnS ceramics by sintering of high purity monodisperse nanopowders [J]. J. Am. Ceram. Soc., 2013, 96(10): 3070
doi: 10.1111/jace.2013.96.issue-10
[41] Chen Y Z, Zhang L, Zhang J, et al. Fabrication of transparent ZnS ceramic by optimizing the heating rate in spark plasma sintering process [J]. Opt. Mater., 2015, 50: 36
doi: 10.1016/j.optmat.2015.03.058
[42] Abdi A, Davar F. Hot pressing sintering of zinc sulfide microsphere decorated with nanorods synthesized by the simple refluxing method [J]. Ceram. Int., 2020, 46(13): 21107
doi: 10.1016/j.ceramint.2020.05.186
[1] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[2] 颉芳霞, 吴光庆, 张世文, 卢泽异, 牟彦铭, 何雪明. 7075-TiB2 复合材料的制备和性能[J]. 材料研究学报, 2025, 39(9): 683-693.
[3] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[6] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[7] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[8] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[9] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[10] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[11] 梁洪华, 陈江超, 郑文育, 吴海宁, 黄亦聪, 易卓彦, 庞大志, 蒋坤朋, 朱归胜, 徐华蕊. PHCN准固态电解质的制备和性能[J]. 材料研究学报, 2025, 39(12): 935-944.
[12] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[13] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[14] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[15] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.