Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (1): 55-62    DOI: 10.11901/1005.3093.2024.193
  研究论文 本期目录 | 过刊浏览 |
成分调节对软磁MnZn铁氧体结构和磁性的影响
徐展源1(), 赵伟2, 史湘石1, 张振宇1, 王中钢1, 韩勇3, 范景莲3
1 中南大学交通运输工程学院 长沙 410075
2 湖南华曙高科技股份有限公司 长沙 410006
3 中南大学 粉末冶金国家重点实验室 长沙 410083
Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites
XU Zhanyuan1(), ZHAO Wei2, SHI Xiangshi1, ZHANG Zhenyu1, WANG Zhonggang1, HAN Yong3, FAN Jinglian3
1 School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China
2 Farsoon Technologies Company Limited, Changsha 410006, China
3 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
引用本文:

徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
Zhanyuan XU, Wei ZHAO, Xiangshi SHI, Zhenyu ZHANG, Zhonggang WANG, Yong HAN, Jinglian FAN. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites[J]. Chinese Journal of Materials Research, 2025, 39(1): 55-62.

全文: PDF(8057 KB)   HTML
摘要: 

用“化学溶胶-喷雾干燥-煅烧”方法制备软磁MnZn铁氧体Mn1 - x Zn x Fe2O4 (x = 0.1,0.3,0.5,0.7,0.9)粉末,使用X射线衍射(XRD)、红外光谱(FTIR)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)和超导量子干涉磁测量系统等手段表征其物相组成、显微结构和磁性能等,研究了成分对其结构和磁性的影响。结果表明,当Mn1 - x Zn x Fe2O4x大于或等于0.5时,制备出的是单相MnZn铁氧体粉末,x小于0.5时则出现杂质相α-Fe2O3。随着x的增大(即Zn含量的提高),MnZn铁氧体的晶格常数先减小后增大最后减小,其两个FTIR吸收峰均单调红移,Raman谱中的峰强度提高。MnZn铁氧体样品中的Fe为+3价、Zn为+2价,而Mn则有+2、+3和+4三种价态。铁氧体粉末样品呈空心球壳形貌,没有异常长大的颗粒。随着Zn含量的提高,MnZn铁氧体的饱和磁化强度(Ms)单调递减(x = 0.5除外)。x = 0.5的MnZn铁氧体(Mn0.5Zn0.5Fe2O4)综合性能最优。

关键词 无机非金属材料Zn含量化学溶胶-喷雾干燥-煅烧MnZn铁氧体磁性能软磁    
Abstract

The Mn1 - x Zn x Fe2O4 (x = 0.1, 0.3, 0.5, 0.7, 0.9) powder materials were prepared by the “chemical sol-spray drying-calcination” method. The prepared powders were characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray photon-electron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscopy (TEM), and superconducting quantum interference magnetic measurement system, in terms of phase composition, microstructure and magnetic properties etc. The results indicated that when the Zn concentration was x = 0.5 or above, MnZn ferrite powders of single-phase can be obtained. When the Zn concentration was below x = 0.5, impurity α-Fe2O3-phase will appear. The lattice constant of MnZn ferrite phase showed a trend of first decreasing, then increasing, and finally decreasing again with the increasing Zn concentration. As the Zn concentration increased, the FTIR absorption peaks of MnZn ferrite phase showed monotonically red shift. The intensity of Raman peaks increased with the increase of Zn concentration. The valences of Fe and Zn were +3 and +2, while Mn exhibits different valence states, with +2, +3, and +4 valences. The prepared powders all presented hollow spherical shell morphology, with no abnormally large particles observed. With the increase of Zn concentration, the variation range of the saturation magnetization (Ms) 8.99~55.87 emu/g, the remanence (Mr) 0.24~6.50 emu/g, the coercivity (Hc) 28.03~107.63 Oe, and the squareness ratio (Mr/Ms) 0.02~0.12, while the saturation magnetization (Ms) decreased monotonically (except for x = 0.5). Furthermore, when the Zn concentration was x = 0.5, the comprehensive characteristics of MnZn ferrite are optimal.

Key wordsinorganic non-metallic materials    zinc concentration    chemical sol-spray drying-calcination    MnZn ferrite    magnetic properties    soft magnetic
收稿日期: 2024-05-07     
ZTFLH:  TB32  
基金资助:国家重点研发计划(2022YFB4300101);中南大学博士后科研启动费(140050022)
通讯作者: 徐展源,xu201230071633@163.com,研究方向为粉末冶金材料
Corresponding author: XU Zhanyuan, Tel: (0731)81890908, E-mail: xu201230071633@163.com
作者简介: 徐展源,男,1990年生,博士
图1  不同Zn含量粉末样品的XRD谱
SamplesAverage crystallite size / nmLattice parameter / nm
x = 0.181.00.84549 ± 0.00039
x = 0.395.10.84404 ± 0.00033
x = 0.5> 1000.84534 ± 0.00010
x = 0.7> 1000.84490 ± 0.00014
x = 0.962.70.84413 ± 0.00015
表1  不同Zn含量粉末样品的平均晶粒尺寸和晶格常数
图2  不同Zn含量粉末样品的FTIR谱
图3  不同Zn含量粉末样品的Raman谱
图4  不同Zn含量粉末样品的XPS谱
图5  不同Zn含量粉末样品的SEM照片
图6  不同Zn含量粉末样品的明场像和高分辨图像
图7  不同Zn含量粉末样品的磁滞回线
SamplesMs / emu·g-1Mr / emu·g-1Hc / OeMr/Ms
x = 0.155.872.2548.860.04
x = 0.349.851.0928.550.02
x = 0.553.496.5028.030.12
x = 0.727.451.25107.630.05
x = 0.98.990.24101.940.03
表2  不同Zn含量粉末样品的磁性参数
1 Al-Hada N M, Kamari H M, Shaari A H, et al. Fabrication and characterization of Manganese-Zinc Ferrite nanoparticles produced utilizing heat treatment technique [J]. Results Phys., 2019, 12: 1821
2 Al Angari Y M. Electromagnetic properties of nanocrystalline Mn-Zn ferrite synthesized from spent Zn-C battery via egg-white route [J]. Int. J. Electrochem. Sci., 2018, 13(12): 12331
3 Angadi Jagadeesha V, Anupama A V, Kumar R, et al. Dose dependent modifications in structural and magnetic properties of γ-irradiated nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics [J]. Ceram. Int., 2017, 43(1): 523
4 Waqas H, Qureshi A H. Influence of pH on nanosized Mn-Zn ferrite synthesized by sol-gel auto combustion process [J]. J. Therm. Anal. Calorim., 2009, 98(2): 355
5 Venkataraju C, Sathishkumar G, Sivakumar K. Effect of nickel on the electrical properties of nanostructured MnZn ferrite [J]. J. Alloy. Compd., 2010, 498(2): 203
6 Zheng Z G, Zhong X C, Zhang Y H, et al. Synthesis, structure and magnetic properties of nanocrystalline Zn x Mn1 - x Fe2O4 prepared by ball milling [J]. J. Alloy. Compd., 2008, 466(1-2): 377
7 Li H H, Feng Z K, He H H, et al. Effect of Fe2+content in raw materials on Mn-Zn ferrite magnetic properties[J], J. Magn. Magn. Mater., 2001, 237(2): 153
8 Zhang Y M, Yang Y J, Chen C L, et al. Effects of Zn content on microstructure and magnetic properties of MnZn ferrite [J]. J. Ceram. Process. Res., 2023, 24(2): 342
9 Shang Y J, Duan Z X, Luo F. Fabrication and property analysis of Mn x Zn1 - x Fe2O4 nanofibers and homogeneous-fiber-reinforced MnZn ferrite materials [J]. J. Magn. Magn. Mater., 2024, 589: 171429
10 Sertkol M, Slimani Y, Almessiere M A, et al. Magnetic and optical characterizations of Dy-Eu co-substituted Mn0.5Zn0.5Fe2O4 nanospinel ferrites [J]. J. Mol. Struct., 2023, 1277: 134891
11 Wu G H, Yu Z, Guo R D, et al. Effects of Sn substitution on the microstructural and electromagnetic properties of MnZn ferrite for high-frequency applications[J]. J. Phys. D-Appl. Phys., 2023, 56(18): 185001
12 Demir A, Guner S, Bakis Y, et al. Magnetic and optical properties of Mn1 - x Zn x Fe2O4 nanoparticles [J]. J. Inorg. Organomet. Polym. Mater., 2014, 24: 729
13 Murugesan C, Chandrasekaran G. Structural and magnetic properties of Mn1 - x Zn x Fe2O4 ferrite nanoparticles [J]. J. Supercond. Nov. Magn, 2016, 29(11): 2887
14 Kareem S H, Ali A A, Shamsuddin M, et al. Nanostructural, morphological and magnetic studies of PEG/Mn(1 - X)Zn( X)Fe2O4 nano-particles synthesized by co-precipitation [J]. Ceram. Int., 2015, 41(9): 11702
15 Thota S, Kashyap S C, Sharma S K, et al. Cation distribution in Ni-substituted Mn0.5Zn0.5Fe2O4 nanoparticles: A Raman, Mössbauer, X-Ray diffraction and electron spectroscopy study[J]. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2016, 206: 69
16 Thota S, Kashyap S C, Sharma S K, et al. Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: role of Mn [J]. J. Phys. Chem. Solids, 2016, 91: 136
17 Chernyshova I V, Hochella Jr M F, Madden A S. Size-dependent structural transformations of hematite nanoparticles. 1. Phase Transition [J]. Phys. Chem. Chem. Phys., 2007, 9: 1736
pmid: 17396185
18 Chamritski I, Burns G. Infrared-and Raman-Active Phonons of magnetite, maghemite, and hematite: A computer simulation and spectroscopic study [J]. J. Phys. Chem. B, 2005, 109(11): 4965
19 Li M L, Fang H Y, Li H L, et al. Synthesis and characterization of MnZn ferrite nanoparticles with improved saturation magnetiza-tion [J]. J. Supercond. Nov. Magn, 2017, 30: 2275
20 Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Appl. Surf. Sci., 2008, 254(8): 2441
21 Flak D, Chen Q L, Mun B S, et al. In situ ambient pressure XPS observation of surface chemistry and electronic structure of α-Fe2O3 and γ-Fe2O3 nanoparticles [J]. Appl. Surf. Sci., 2018, 455: 1019
22 Liu P, He H P, Wei G L, et al. Effect of Mn substitution on the promoted formaldehyde oxidation over spinel ferrite: Catalyst characterization, performance and reaction mMechanism [J]. Appl. Catal. B-Environ., 2016, 182: 476
23 Yang S J, Guo Y F, Yan N Q, et al. Elemental mercury capture from flue gas by magnetic Mn-Fe spinel: Effect of chemical heterogeneity [J]. Ind. Eng. Chem. Res., 2011, 50(16): 9650
24 Nesbitt H W, Banerjee D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation [J]. Am. Miner., 1998, 83(3-4): 305
25 Xu Z Y, Fan J L, Zhao S Q, et al. Microstructure and magnetic properties of MnZn ferrite powders prepared by nano-in-situ composite method [J]. J. Alloy. Compd., 2020: 155285
26 Zapata A, Herrera G. Effect of zinc concentration on the microstructure and relaxation frequency of Mn-Zn ferrites synthesized by solid state reaction [J]. Ceram. Int., 2013, 39(7): 7853
27 Kagdi A R, Solanki N P, Carvalho F E, et al. Influence of Mg substitution on structural, magnetic and dielectric properties of X-type barium-zinc hexaferrites Ba2Zn2 - x Mg x Fe28O46 [J]. J. Alloy. Compd., 2018, 741: 377
28 Chauhan C C, Kagdi A R, Jotania R B, et al. Structural, magnetic and dielectric properties of Co-Zr substituted M-type calcium hexagonal ferrite nanoparticles in the presence of α-Fe2O3 phase [J]. Ceram. Int., 2018, 44(15): 17812
29 Mali A, Ataie A. Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol-gel combustion route [J]. Scr. Mater., 2005, 53(9): 1065
[1] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[2] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[3] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[4] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[5] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[6] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[7] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[8] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[9] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[10] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[11] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[12] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[13] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[14] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[15] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.