Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (12): 935-944    DOI: 10.11901/1005.3093.2025.092
  研究论文 本期目录 | 过刊浏览 |
PHCN准固态电解质的制备和性能
梁洪华1, 陈江超1, 郑文育1, 吴海宁1, 黄亦聪1, 易卓彦1, 庞大志1, 蒋坤朋1, 朱归胜1(), 徐华蕊1,2
1.电子信息材料与器件教育部工程研究中心 广西信息材料重点实验室 桂林电子科技大学材料科学与工程学院 桂林 541004
2.北部湾大学石油与化工学院 钦州 535011
Synthesis and Performance of a Novel Quasi-solid-state Electrolyte PHCN Based on Polyvinylidene Fluoride-hydrogenated Acrylate Incorparated with Mesoporous Spherical g-C3N4
LIANG Honghua1, CHEN Jiangchao1, ZHENG Wenyu1, WU Haining1, HUANG Yicong1, YI Zhuoyan1, PANG Dazhi1, JIANG Kunpeng1, ZHU Guisheng1(), XU Huarui1,2
1.Engineering Research Center of Electronic Information Materials and Devices, Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
2.College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
引用本文:

梁洪华, 陈江超, 郑文育, 吴海宁, 黄亦聪, 易卓彦, 庞大志, 蒋坤朋, 朱归胜, 徐华蕊. PHCN准固态电解质的制备和性能[J]. 材料研究学报, 2025, 39(12): 935-944.
Honghua LIANG, Jiangchao CHEN, Wenyu ZHENG, Haining WU, Yicong HUANG, Zhuoyan YI, Dazhi PANG, Kunpeng JIANG, Guisheng ZHU, Huarui XU. Synthesis and Performance of a Novel Quasi-solid-state Electrolyte PHCN Based on Polyvinylidene Fluoride-hydrogenated Acrylate Incorparated with Mesoporous Spherical g-C3N4[J]. Chinese Journal of Materials Research, 2025, 39(12): 935-944.

全文: PDF(10656 KB)   HTML
摘要: 

将介孔球状g-C3N4引入PVDF-HFP基质制备出PHCN系列准固态电解质。这种准固态电解质其独特的“拉丝”与“驿站式”结构,提高了离子传导性能和降低了聚合物结晶度。其中的PHCN-3性能优异,在30 ℃其离子电导率为2.62 × 10-3 S·cm-1tLi+迁移数为0.71,电化学窗口拓展至约4.6 V。在电流密度为0.2 mA·cm-2条件下用PHCN准固态电解质组装的锂对称电池的稳定循环超过2000 h,LiFePO4/PHCN-3-LiPF6/Li电池在0.5C倍率条件下循环200次后其容量保持率仍保持88.33%。

关键词 无机非金属材料准固态电解质锂离子电池介孔球状g-C3N4“拉丝”结构“驿站”式结构    
Abstract

Quasi-solid-state electrolytes have garnered significant attention in lithium-ion battery research due to their potential to overcome the safety risks of liquid electrolytes and the low room-temperature ionic conductivity of solid-state electrolytes. In this work, a novel series of quasi-solid-state electrolytes named PHCN (namely PHCN-1, PHCN-2, PHCN-3, and PHCN-4) was fabricated by incorporating mesoporous spherical g-C3N4 into a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix. The resulting PHCN electrolytes feature unique stationary and "instantaneous" structures, which contribute to enhanced ionic conductivity and reduced polymer crystallinity. The optimized sample, PHCN-3 (with 3% g-C3N4), exhibits outstanding performance: an ionic conductivity of 2.62 × 10-3 S·cm-1 at 30 oC, a Li+ transference number of 0.71, and a widened electrochemical stability window of approximately 4.6 V. A lithium symmetric cell employing the PHCN-3 electrolyte demonstrated exceptional cycling stability for over 2000 h at a current density of 0.2 mA·cm-2. Furthermore, a LiFePO4/PHCN-3-LiPF6/Li cell maintained a high capacity retention of 88.33% after 200 cycles at a 0.5C rate. These findings indicate that the PHCN quasi-solid-state electrolytes present a promising path for the development of high-performance and safe lithium-ion batteries.

Key wordsinorganic non-metallic materials    quasi-solid electrolyte    lithium-ion battery    mesoporous spherical g-C3N4    “brushed” structure    “stationary” structure
收稿日期: 2025-02-27     
ZTFLH:  TB332  
基金资助:广西科技基地和人才专项(桂科AD23023013);桂林市科学研究与技术开发计划(20220120-1)
通讯作者: 朱归胜,教授,zhuguisheng@guet.edu.cn,研究方向为纳米光电材料,能源材料及器件等
Corresponding author: ZHU Guisheng, Tel: 13507730539, E-mail: zhuguisheng@guet.edu.cn
作者简介: 梁洪华,男,1999年生,硕士生
图1  PHCN QSE的制造工艺示意图
图2  介孔球状g-C3N4的SEM图像和EDS能谱、多通道PVDF-HFP的SEM图像、PHCN-3的SEM图像、拉丝状结构以及横截面SEM图像
图3  介孔球状g-C3N4的N2吸附脱附曲线和孔径分布、介孔球状g-C3N4的XRD谱、PHCN-X和PVDF-HFP的XRD谱、FTIR光谱、应力-应变曲线、吸液率、热重分析以及DSC分析
图4  温度为30 ℃时Nyquist图、阿伦尼乌斯曲线、活化能曲线、PHCN-3在30 ℃极化前后的电池极化曲线和阻抗图、PHCN-3和PVDF-HFP准固态电解质在30 ℃、扫描速率为10 mV·s-1的LSV曲线
图5  用PVDF-HFP和PHCN-3组装的锂对称电池的恒电流循环曲线以及PHCN-3的临界电流密度曲线
图6  LiFePO4/PHCN-3-LiPF6/Li电池的倍率性能和在不同循环速率下的首次充放电曲线、PHCN-3和PVDF-HFP在0.5C和30 ℃下的循环稳定性
图7  LiFePO4/PHCN-3-LiPF6/Li电池循环500圈后锂片的表面形貌
[1] Zhang X Y, Cheng S C, Fu C K, et al. Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries [J]. Nano-Micro Lett., 2025, 17(1): 2
doi: 10.1007/s40820-024-01498-y
[2] Janek J, Zeier W G. Challenges in speeding up solid-state battery development [J]. Nat. Energy, 2023, 8(3): 230
doi: 10.1038/s41560-023-01208-9
[3] Mahmood A, Bai Z, Wang T, et al. Enabling high-performance multivalent metal-ion batteries: current advances and future prospects [J]. Chem. Soc. Rev., 2025, 54(5): 2369
doi: 10.1039/D4CS00929K
[4] Manthiram A, Yu X W, Wang S F. Lithium battery chemistries enabled by solid-state electrolytes [J]. Nat. Rev. Mater., 2017, 2(4): 16103
doi: 10.1038/natrevmats.2016.103
[5] Tang L F, Chen B W, Zhang Z H, et al. Polyfluorinated crosslinker-based solid polymer electrolytes for long-cycling 4.5 V lithium metal batteries [J]. Nat. Commun., 2023, 14(1): 2301
doi: 10.1038/s41467-023-37997-6
[6] Zhang L, Wang S, Wang Q, et al. Dendritic solid polymer electrolytes: a new paradigm for high-performance lithium-based batteries [J]. Adv. Mater., 2023, 35(35): 2303355
doi: 10.1002/adma.v35.35
[7] Zhao Q, Stalin S, Zhao C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries [J]. Nat. Rev. Mater., 2020, 5(3): 229
doi: 10.1038/s41578-019-0165-5
[8] Zheng Y, Yao Y Z, Ou J H, et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures [J]. Chem. Soc. Rev., 2020, 49(23): 8790
doi: 10.1039/d0cs00305k pmid: 33107869
[9] Liang Y L, Dong H, Aurbach D, et al. Current status and future directions of multivalent metal-ion batteries [J]. Nat. Energy, 2020, 5(9): 646
doi: 10.1038/s41560-020-0655-0
[10] Wang X H, Du T X, Dong X F, et al. Application of advanced Wide-Temperature range and flame retardant "Leaf-Vein" Structured functionality composite Quasi-Solid-State electrolyte [J]. Energy Storage Mater., 2024, 68: 103355
[11] Fan X Y, Zhong C, Liu J, et al. Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes [J]. Chem. Rev., 2022, 122(23): 17155
doi: 10.1021/acs.chemrev.2c00196 pmid: 36239919
[12] An H W, Li M L, Liu Q S, et al. Strong Lewis-acid coordinated PEO electrolyte achieves 4.8 V-class all-solid-state batteries over 580 Wh kg-1 [J]. Nat. Commun., 2024, 15(1): 9150
doi: 10.1038/s41467-024-53094-8
[13] Shen M N, Wei Y, Ge M, et al. Oxygenated carbon nitride-based high-energy-density lithium-metal batteries [J]. Interdiscip. Mater., 2024, 3(5): 791
[14] Liu J, Lin H S T, Li H T, et al. In situ polymerization derived from PAN-based porous membrane realizing double-stabilized interface and high ionic conductivity for lithium-metal batteries [J]. ACS Appl. Mater. Interfaces, 2024, 16(16): 21264
[15] Liu S L, Liu W Y, Ba D L, et al. Filler-integrated composite polymer electrolyte for solid-state lithium batteries [J]. Adv. Mater., 2023, 35(2): 2110423
doi: 10.1002/adma.v35.2
[16] Liang H M, Wang L, Wang A P, et al. Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review [J]. Nano-Micro Lett., 2023, 15(1): 42
doi: 10.1007/s40820-022-00996-1 pmid: 36719552
[17] Dirican M, Yan C Y, Zhu P, et al. Composite solid electrolytes for all-solid-state lithium batteries [J]. Mater. Sci. Eng., 2019, 136R: 27
[18] Yu Q J, Jiang K C, Yu C L, et al. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries [J]. Chin. Chem. Lett., 2021, 32(9): 2659
doi: 10.1016/j.cclet.2021.03.032
[19] Zhang Q, Wang Q, Huang S S, et al. Preparation and electrochemical study of PVDF-HFP/LATP/g-C3N4 composite polymer electrolyte membrane [J]. Inorg. Chem. Commun., 2021, 131: 108793
doi: 10.1016/j.inoche.2021.108793
[20] Sun Z J, Li Y H, Zhang S Y, et al. g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability [J]. J. Mater. Chem., 2019, 7A: 11069
[21] Hao X X, Chen K, Tang Y P, et al. 2-Dimensional g-C3N4 nanosheets modified LATP-based “Polymer-in-Ceramic” electrolyte for solid-state lithium batteries [J]. J. Alloy. Compd., 2023, 942: 169064
doi: 10.1016/j.jallcom.2023.169064
[22] Majdoub M, Anfar Z, Amedlous A. Emerging chemical functionalization of g-C3N4: covalent/noncovalent modifications and applications [J]. ACS Nano, 2020, 14: 12390
doi: 10.1021/acsnano.0c06116
[23] Song J Z, Qi H Y, Yuan W S, et al. Graphitic carbon nitride (g-C3N4) as an electrolyte additive boosts fast-charging and stable cycling of graphite anodes for Li-ion batteries [J]. J. Mater. Chem., 2025, 13A: 1964
[24] Han Q Y, Wang S Q, Wang L G, et al. Exploiting Iodine redox chemistry for achieving high-capacity and durable PEO-based all-solid-state LiFePO4/Li batteries [J]. Adv. Energy Mater., 2023, 13(36): 2301462
doi: 10.1002/aenm.v13.36
[25] Huang Y, Chen B, Duan J, et al. Graphitic carbon nitride (g-C3N4): an interface enabler for solid-state lithium metal batteries [J]. Angew. Chem.-Int. Edit., 2020, 59(9): 3699
doi: 10.1002/anie.v59.9
[26] Hu J L, Chen K Y, Yao Z G, et al. Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte [J]. Sci. Bull., 2021, 66(7): 694
doi: 10.1016/j.scib.2020.11.017 pmid: 36654445
[27] Mansor N, Miller T S, Dedigama I, et al. Graphitic carbon nitride as a catalyst support in fuel cells and electrolyzers [J]. Electrochim. Acta, 2016, 222: 44
doi: 10.1016/j.electacta.2016.11.008
[28] Liu H L, Pan H G, Yan M, et al. Extraordinary ionic conductivity excited by hierarchical ion-transport pathways in MOF-based quasi-solid electrolytes [J]. Adv. Mater., 2023, 35(26): 2300888
doi: 10.1002/adma.v35.26
[29] Li B, Wang C H, Yu R Z, et al. Recent progress on metal-organic framework/polymer composite electrolytes for solid-state lithium metal batteries: ion transport regulation and interface engineering [J]. Energy Environ. Sci., 2024, 17(5): 1854
doi: 10.1039/D3EE02705H
[30] Yang X Y, Liu J X, Pei N B, et al. The critical role of fillers in composite polymer electrolytes for lithium battery [J]. Nano-Micro Lett., 2023, 15(1): 74
doi: 10.1007/s40820-023-01051-3 pmid: 36976386
[31] Park S S, Tulchinsky Y, Dincă M. Single-ion Li+, Na+, and Mg2+ solid electrolytes supported by a mesoporous anionic Cu-azolate metal-organic framework [J]. J. Am. Chem. Soc., 2017, 139(38): 13260
doi: 10.1021/jacs.7b06197
[32] Wang Y, Wang X C, Antonietti M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry [J]. Angew. Chem.-Int. Edit., 2012, 51(1): 68
doi: 10.1002/anie.v51.1
[33] Jun Y S, Lee E Z, Wang X C, et al. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres [J]. Adv. Funct. Mater., 2013, 23(29): 3661
doi: 10.1002/adfm.v23.29
[34] Bao D Q, Tao Y, Zhong Y H, et al. High-performance dual-salt plastic crystal electrolyte enabled by succinonitrile-regulated porous polymer host [J]. Adv. Funct. Mater., 2023, 33(17): 2213211
doi: 10.1002/adfm.v33.17
[35] Yang P, Gao X W, Tian X L, et al. Upgrading traditional organic electrolytes toward future lithium metal batteries: a hierarchical nano-sio2-supported gel polymer electrolyte [J]. ACS Energy Lett., 2020, 5(5): 1681
doi: 10.1021/acsenergylett.0c00412
[36] Zhang Q Q, Liu K, Ding F, et al. Recent advances in solid polymer electrolytes for lithium batteries [J]. Nano Res., 2017, 10: 4139
doi: 10.1007/s12274-017-1763-4
[37] Zhao Y, Wang L, Zhou Y N, et al. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries [J]. Adv. Sci., 2021, 8(7): 2003675
doi: 10.1002/advs.v8.7
[38] Xu R, Cheng X B, Yan C, et al. Artificial Interphases for highly stable lithium metal anode [J]. Matter, 2019, 1(2): 317
doi: 10.1016/j.matt.2019.05.016
[39] Wan H L, Wang Z Y, Liu S F, et al. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design [J]. Nat. Energy, 2023, 8(5): 473
doi: 10.1038/s41560-023-01231-w
[40] Liu J, Bao Z N, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries [J]. Nat. Energy, 2019, 4(3): 180
doi: 10.1038/s41560-019-0338-x
[41] Ye L H, Li X. A dynamic stability design strategy for lithium metal solid state batteries [J]. Nature, 2021, 593(7858): 218
doi: 10.1038/s41586-021-03486-3
[1] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[2] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[3] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[4] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[5] 孙世贸, 刘红昌, 刘宏伟, 王军, 商晨楷. 稀土离子掺杂硅藻负极材料的制备及其电化学性能[J]. 材料研究学报, 2025, 39(7): 499-509.
[6] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[7] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[8] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[9] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[10] 李泓霄, 李焕勇, 张炫. β-ZnS透明陶瓷的制备及相生成机理[J]. 材料研究学报, 2025, 39(12): 927-934.
[11] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[12] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[13] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[14] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[15] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.