|
|
1T/2H O-MoS2@S-pCN催化剂的制备和性能 |
刘志华1,2, 王明月1,2, 李易娟1,2, 丘一帆1,2, 李翔3( ), 苏伟钊1,2 |
1.长沙理工大学水利与海洋工程学院 长沙 410114 2.洞庭湖水环境治理与生态修复湖南省重点实验室 长沙 410114 3.长沙市排水责任有限公司 长沙 410015 |
|
Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin |
LIU Zhihua1,2, WANG Mingyue1,2, LI Yijuan1,2, QIU Yifan1,2, LI Xiang3( ), SU Weizhao1,2 |
1.School of Hydraulic and Ocean Engineering, Changsha University of Science & Technology, Changsha 410114, China 2.Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China 3.Changsha Drainage Liability Co., Ltd., Changsha 410015, China |
引用本文:
刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
Zhihua LIU,
Mingyue WANG,
Yijuan LI,
Yifan QIU,
Xiang LI,
Weizhao SU.
Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. Chinese Journal of Materials Research, 2025, 39(7): 551-560.
[1] |
Sun J L, Hou Y P, Yu Z B, et al. Visible-light-driven Z-scheme Zn3In2S6/AgBr photocatalyst for boosting simultaneous Cr (VI) reduction and metronidazole oxidation: kinetics, degradation pathways and mechanism [J]. J. Hazard. Mater., 2021, 419: 126543
|
[2] |
Phoon B L, Ong C C, Saheed M S M, et al. Conventional and emerging technologies for removal of antibiotics from wastewater [J]. J. Hazard. Mater., 2020, 400: 122961
|
[3] |
Li X Q, Chen D Y, Li N J, et al. Efficient reduction of Cr(VI) by a BMO/Bi2S3 heterojunction via synergistic adsorption and photocatalysis under visible light [J]. J. Hazard. Mater., 2020, 400: 123243
|
[4] |
Yin H F, Fan T L, Cao Y, et al. Construction of three-dimensional MgIn2S4 nanoflowers/two-dimensional oxygen-doped g-C3N4 nano-sheets direct Z-scheme heterojunctions for efficient Cr(VI) reduction: insight into the role of superoxide radicals [J]. J. Hazard. Mater., 2021, 420: 126567
|
[5] |
Fu S, Huang Q, Deng P Y, et al. Novel hierarchical BiOBr-based photocatalyst co-modified with Ag nanoparticles and porous g-C3N4 nanosheets for efficient removal of tetracycline and Cr(VI) [J]. J. Mater. Sci.: Mater. Electron., 2021, 32(10): 13014
|
[6] |
Liang Q W, Ploychompoo S, Chen J D, et al. Simultaneous Cr(VI) reduction and bisphenol a degradation by a 3D Z-scheme Bi2S3-BiVO4 graphene aerogel under visible light [J]. Chem. Eng. J., 2020, 384: 123256
|
[7] |
Sun X F, Xian T, Di L J, et al. Photocatalytic degradation and reduction properties of AuAg/Bi2O3 composite [J]. Chin. J. Mater. Res., 2020, 34(12): 921
|
[7] |
孙小锋, 县 涛, 邸丽景 等. AuAg/Bi2O3复合材料的光催化降解和还原性能 [J]. 材料研究学报, 2020, 34(12): 921
doi: 10.11901/1005.3093.2020.182
|
[8] |
Zhao H P, Li G F, Tian F, et al. g-C3N4 surface-decorated Bi2O2CO3 for improved photocatalytic performance: theoretical calculation and photodegradation of antibiotics in actual water matrix [J]. Chem. Eng. J., 2019, 366: 468
|
[9] |
Ren F Y, Ouyang E M. Photocatalytic degradation of tetracycline hydrochloride by g-C3N4 modified Bi2O3 [J]. Chin. J. Mater. Res., 2023, 37(8): 633
|
[9] |
任富彦, 欧阳二明. g-C3N4改性Bi2O3对盐酸四环素的光催化降解 [J]. 材料研究学报, 2023, 37(8): 633
doi: 10.11901/1005.3093.2022.479
|
[10] |
Liu Z H, Yue Y C, Qiu Y F, et al. Preparation of g-C3N4/Ag/BiOBr composite and photocatalytic reduction of nitrate [J]. Chin. J. Mater. Res., 2023, 37(10): 781
|
[10] |
刘志华, 岳远超, 丘一帆 等. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮 [J]. 材料研究学报, 2023, 37(10): 781
doi: 10.11901/1005.3093.2022.627
|
[11] |
Yang Q, Wei S Q, Zhang L M, et al. Ultrasound-assisted synthesis of BiVO4/C-dots/g-C3N4 Z-scheme heterojunction photocatalysts for degradation of minocycline hydrochloride and Rhodamine B: optimization and mechanism investigation [J]. New J. Chem., 2020, 44: 17641
|
[12] |
Wu M Q, Ding T, Cai J M, et al. Coaddition of phosphorus and proton to graphitic carbon nitride for synergistically enhanced visible light photocatalytic degradation and hydrogen evolution [J]. ACS Sustain. Chem. Eng., 2018, 6: 8167
|
[13] |
Xia P F, Zhu B C, Yu J G, et al. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction [J]. J. Mater. Chem., 2017, 5A: 3230
|
[14] |
Li Z Z, Li H Z, Wang S J, et al. Mesoporous black TiO2/MoS2/Cu2S hierarchical tandem heterojunctions toward optimized photothermal-photocatalytic fuel production [J]. Chem. Eng. J., 2022, 427: 131830
|
[15] |
Lin H W, Zhang K, Yang G L, et al. Ultrafine nano 1T-MoS2 monolayers with NiOx as dual co-catalysts over TiO2 photoharvester for efficient photocatalytic hydrogen evolution [J]. Appl. Catal., 2020, 279B: 119387
|
[16] |
Nam G H, He Q Y, Wang X Z, et al. In‐plane anisotropic properties of 1T′‐MoS2 layers [J]. Adv. Mater., 2019, 31: 1807764
|
[17] |
Xu H, Yi J J, She X J, et al. 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution [J]. Appl. Catal., 2018, 220B: 379
|
[18] |
Sardar W, Ali G, Jiang F C, et al. Systematically designed g-C3N4/rGO/MoS2 nanocomposite for enhanced photocatalytic performance [J]. Curr. Appl. Phys., 2024, 57: 42
|
[19] |
Moghimifar Z, Yazdani F, Tabar-Heydar K, et al. Photocatalytic hydrogen evolution under visible light using MoS2/g-C3N4 nano-photocatalysts [J]. Catal. Lett., 2024, 154: 1255
|
[20] |
Wang Z N, Lu D Z, Pan J C, et al. Efficient photocatalytic dehydrogenation and synergistic selective oxidation of benzyl alcohol to benzaldehyde for Zn0.5Cd0.5S co-modified with MoS2 nanoflowers and g-C3N4 nanosheets [J]. Appl. Surf. Sci., 2023, 640: 158384
|
[21] |
Balakrishnan A, Suryaa K V, Tripathy H, et al. Phosphorylated g-C3N4/sulfur self-doped g-C3N4 homojunction carboxymethyl cellulose beads: An efficient photocatalyst for H2O2 production [J]. J. Colloid Interface Sci., 2024, 663: 1087
|
[22] |
Xue Y J, Ji Y H, Wang X Y, et al. Heterostructuring noble-metal-free 1T' phase MoS2 with g-C3N4 hollow nanocages to improve the photocatalytic H2 evolution activity [J]. Green Energy Environ., 2023, 8: 864
|
[23] |
Liang Z Q, Meng X F, Xue Y J, et al. Facile preparation of metallic 1T phase molybdenum selenide as cocatalyst coupled with graphitic carbon nitride for enhanced photocatalytic H2 production [J]. J. Colloid Interface Sci., 2021, 598: 172
|
[24] |
Mao Z Y, Chen J J, Yang Y F, et al. Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution [J]. ACS Appl. Mater. Interfaces, 2017, 9: 12427
|
[25] |
Liu X, Han X L, Liang Z Q, et al. Phosphorous-doped 1T-MoS2 decorated nitrogen-doped g-C3N4 nanosheets for enhanced photocatalytic nitrogen fixation [J]. J. Colloid Interface Sci., 2022, 605: 320
|
[26] |
Liang Z, Xue Y, Wang X, et al. Structure engineering of 1T/2H multiphase MoS2 via oxygen incorporation over 2D layered porous g-C3N4 for remarkably enhanced photocatalytic hydrogen evolution [J]. Mater. Today Nano, 2022, 18: 100204
|
[27] |
Sun B T, Liang Z Q, Qian Y Y, et al. Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS [J]. ACS Appl. Mater. Interfaces, 2020, 12: 7257
|
[28] |
Han Z Z, Ning X F, Yin Z Q, et al. Enhancement of photocatalytic activity for overall water splitting by inhibiting reverse reactions and photocorrosion of C3N4 via modified with TiO2 thin layer [J]. Int. J. Hydrog. Energy, 2024, 59: 856
|
[29] |
Peng Y H, Geng M J, Yu J Q, et al. Vacancy-induced 2H@1T MoS2 phase-incorporation on ZnIn2S4 for boosting photocatalytic hydrogen evolution [J]. Appl. Catal., 2021, 298B: 120570
|
[30] |
Shi S L, Sun Z X, Hu Y H. Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2 [J]. J. Mater. Chem., 2018, 6A(47) : 23932
|
[31] |
Palai A, Panda N R, Sahu D. Novel ZnO blended SnO2 nanocatalysts exhibiting superior degradation of hazardous pollutants and enhanced visible photoemission properties [J]. J. Mol. Struct., 2021, 1244: 131245
|
[32] |
Viñes F, Iglesias-Juez A, Illas F, et al. Hydroxyl identification on ZnO by infrared spectroscopies: theory and experiments [J]. J. Phys. Chem., 2014, 118C(3) : 1492
|
[33] |
Chen Y L, Su F Y, Xie H Q, et al. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution [J]. Chem. Eng. J., 2021, 404: 126498
|
[34] |
Sahu D, Panda N R. Synthesis of novel nanocomposite of g-C3N4 coated ZnO-MoS2 for energy storage and photocatalytic applications [J]. Chemosphere, 2024, 350: 141014
|
[35] |
Wu Z S, He X F, Xue Y T, et al. Cyclodextrins grafted MoS2/g-C3N4 as high-performance photocatalysts for the removal of glyphosate and Cr (VI) from simulated agricultural runoff [J]. Chem. Eng. J., 2020, 399: 125747
|
[36] |
Tian S C, Zhang X H, Zhang Z H. Capacitive deionization with MoS2/g-C3N4 electrodes [J]. Desalination, 2020, 479: 114348
|
[37] |
Li W Q, Wang Y X, Li Y M, et al. Metal organic framework decorated with molybdenum disulfide for visible-light-driven reduction of hexavalent chromium: Performance and mechanism [J]. J. Clean. Prod., 2021, 318: 128513
|
[38] |
Fang Z, Li Q, Su L, et al. Efficient synergy of photocatalysis and adsorption of hexavalent chromium and rhodamine B over Al4SiC4/rGO hybrid photocatalyst under visible-light irradiation [J]. Appl. Catal., 2019, 241B: 548
|
[39] |
Sun Y W, Chen C, Qi X, et al. Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) heterojunction and its performance in photocatalytic reduction of Cr(VI) [J]. Chin. J. Mater. Res., 2023, 37(11): 871
|
[39] |
孙玉伟, 陈 畴, 祁 昕 等. Ag3PO4/MIL-125(Ti) Z型异质结的构建及其光催化还原Cr(VI)的性能 [J]. 材料研究学报, 2023, 37(11): 871
doi: 10.11901/1005.3093.2022.669
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|