Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (7): 551-560    DOI: 10.11901/1005.3093.2024.431
  研究论文 本期目录 | 过刊浏览 |
1T/2H O-MoS2@S-pCN催化剂的制备和性能
刘志华1,2, 王明月1,2, 李易娟1,2, 丘一帆1,2, 李翔3(), 苏伟钊1,2
1.长沙理工大学水利与海洋工程学院 长沙 410114
2.洞庭湖水环境治理与生态修复湖南省重点实验室 长沙 410114
3.长沙市排水责任有限公司 长沙 410015
Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin
LIU Zhihua1,2, WANG Mingyue1,2, LI Yijuan1,2, QIU Yifan1,2, LI Xiang3(), SU Weizhao1,2
1.School of Hydraulic and Ocean Engineering, Changsha University of Science & Technology, Changsha 410114, China
2.Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
3.Changsha Drainage Liability Co., Ltd., Changsha 410015, China
引用本文:

刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
Zhihua LIU, Mingyue WANG, Yijuan LI, Yifan QIU, Xiang LI, Weizhao SU. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. Chinese Journal of Materials Research, 2025, 39(7): 551-560.

全文: PDF(10301 KB)   HTML
摘要: 

用水热法在硫掺杂g-C3N4纳米片(S-pCN)表面原位合成1T/2H O-MoS2@S-pCN可见光催化剂并使用XRD、XPS、FT-IR、SEM和UV-vis等手段对其表征,研究了这种催化剂的光电化学特性和和协同处理环丙沙星(CIP)和六价铬Cr(VI)的性能及其机理。结果表明,15% 1T/2H O-MoS2@S-pCN光催化剂在2 min内对CIP的去除率为97.63%,在10 min内对Cr(VI)的去除率为96.2%。5次循环使用后,这种催化剂优异的光催化性能不变。1T/2H O-MoS2@S-pCN光催化剂中的异质结、二硫化钼1T/2H相以及氧掺杂等因素,提高了其对可见光的响应并抑制了电子-空穴对的复合。这种催化剂去除CIP和Cr(VI)的机理是,在活性物质(h+、e-、∙O2-)的作用下氧化CIP,在活性物质(e-、∙O2-)的作用下还原Cr(VI)。

关键词 无机非金属材料1T/2H O-MoS2@S-pCN光催化六价铬环丙沙星    
Abstract

A novel visible-light-driven 1T/2H O-MoS2@S-pCN photocatalyst was synthesized in situ on sulfur-doped g-C3N4 nanosheets (S-pCN) via hydrothermal method with N, N-dimethylformamide (DMF) as solvent. The prepared 1T/2H O-MoS2@S-pCN photocatalyst was characterized by means of XRD, XPS, FT-IR, SEM and UV-vis. The photoelectrochemical properties of the catalyst and the oxidation-reduction behavior of the mixture of ciprofloxacin (CIP) and hexavalent chromium (Cr(VI)) induced by the catalyst were also studied. The results showed that if 15% 1T/2H O-MoS2@S-pCN photocatalyst was introduced into the mixed solution, the removal rate of CIP and Cr(VI) could reach 97.63% within 2 min and 96.2% within 10 min respectively. Furthermore, after five cycle of use, the excellent photocatalytic performance of the catalyst remained unchanged. The excellent performance of the photocatalyst may be attributed to the existence of heterojunctions, the 1T/2H molybdenum disulfide phase with peculiar structure and oxygen doping in the 1T/2H O-MoS2@S-pCN photocatalyst, which could improve its visible light response and effectively inhibit the electron-hole pair recombination. The mechanism related with the removal of CIP and Cr(VI) by this catalyst may be that CIP was oxidized by active substances (h+, e-, ∙O2-), and Cr(VI) was reduced by active substances (e-, ∙O2-).

Key wordsinorganic non-metallic materials    1T/2H O-MoS2@S-pCN    photocatalysis    hexavalent chro-mium    ciprofloxacin
收稿日期: 2024-10-22     
ZTFLH:  X703.1  
基金资助:长沙理工大学青年教师成长计划(2019QJCZ038)
通讯作者: 李翔,高级工程师,14410876@qq.com,研究方向为污水处理技术
Corresponding author: LI Xiang, Tel: 13467516628, E-mail: 14410876@qq.com
作者简介: 刘志华,男,1979年生,博士
图1  1T/2H O-MoS2@S-pCN和S-pCN的XRD谱
图2  15% 1T/2H O-MoS2@S-pCN复合材料的XPS谱(a) S 2p (b) N 1s (c) Mo 3d (d) C 1s (e) O 1s (f) survey spectrum
图3  S-pCN和1T/2H O-MoS2@S-pCN催化剂的FT-IR谱
图4  1T/2H O-MoS2@S-pCN的SEM 形貌
图5  15% 1T/2H O-MoS2@S-pCN 的元素面分析(EPMA-WDS)
图6  S-pCN和1T/2H O-MoS2@S-pCN 的紫外漫反射谱和Tauc曲线
图7  S-pCN和1T/2H O-MoS2@S-pCN的Nyquist图和瞬态光电流
图8  S-pCN和1T/2H O-MoS2@S-pCN的Mott-Schottky图
图9  S-pCN和1T/2H O-MoS2@S-pCN光催化协同处理CIP和Cr(VI)的性能
图10  15%1T/2H O-MoS2@S-pCN光催化降解CIP和Cr(VI)的循环实验结果以及催化剂使用前后的XRD谱
图11  自由基清除剂对15% 1T/2H O-MoS2@S-pCN光催化降解的影响
图12  1T/2H O-MoS2@S-pCN光催化协同处理CIP和Cr(VI)的机理
[1] Sun J L, Hou Y P, Yu Z B, et al. Visible-light-driven Z-scheme Zn3In2S6/AgBr photocatalyst for boosting simultaneous Cr (VI) reduction and metronidazole oxidation: kinetics, degradation pathways and mechanism [J]. J. Hazard. Mater., 2021, 419: 126543
[2] Phoon B L, Ong C C, Saheed M S M, et al. Conventional and emerging technologies for removal of antibiotics from wastewater [J]. J. Hazard. Mater., 2020, 400: 122961
[3] Li X Q, Chen D Y, Li N J, et al. Efficient reduction of Cr(VI) by a BMO/Bi2S3 heterojunction via synergistic adsorption and photocatalysis under visible light [J]. J. Hazard. Mater., 2020, 400: 123243
[4] Yin H F, Fan T L, Cao Y, et al. Construction of three-dimensional MgIn2S4 nanoflowers/two-dimensional oxygen-doped g-C3N4 nano-sheets direct Z-scheme heterojunctions for efficient Cr(VI) reduction: insight into the role of superoxide radicals [J]. J. Hazard. Mater., 2021, 420: 126567
[5] Fu S, Huang Q, Deng P Y, et al. Novel hierarchical BiOBr-based photocatalyst co-modified with Ag nanoparticles and porous g-C3N4 nanosheets for efficient removal of tetracycline and Cr(VI) [J]. J. Mater. Sci.: Mater. Electron., 2021, 32(10): 13014
[6] Liang Q W, Ploychompoo S, Chen J D, et al. Simultaneous Cr(VI) reduction and bisphenol a degradation by a 3D Z-scheme Bi2S3-BiVO4 graphene aerogel under visible light [J]. Chem. Eng. J., 2020, 384: 123256
[7] Sun X F, Xian T, Di L J, et al. Photocatalytic degradation and reduction properties of AuAg/Bi2O3 composite [J]. Chin. J. Mater. Res., 2020, 34(12): 921
[7] 孙小锋, 县 涛, 邸丽景 等. AuAg/Bi2O3复合材料的光催化降解和还原性能 [J]. 材料研究学报, 2020, 34(12): 921
doi: 10.11901/1005.3093.2020.182
[8] Zhao H P, Li G F, Tian F, et al. g-C3N4 surface-decorated Bi2O2CO3 for improved photocatalytic performance: theoretical calculation and photodegradation of antibiotics in actual water matrix [J]. Chem. Eng. J., 2019, 366: 468
[9] Ren F Y, Ouyang E M. Photocatalytic degradation of tetracycline hydrochloride by g-C3N4 modified Bi2O3 [J]. Chin. J. Mater. Res., 2023, 37(8): 633
[9] 任富彦, 欧阳二明. g-C3N4改性Bi2O3对盐酸四环素的光催化降解 [J]. 材料研究学报, 2023, 37(8): 633
doi: 10.11901/1005.3093.2022.479
[10] Liu Z H, Yue Y C, Qiu Y F, et al. Preparation of g-C3N4/Ag/BiOBr composite and photocatalytic reduction of nitrate [J]. Chin. J. Mater. Res., 2023, 37(10): 781
[10] 刘志华, 岳远超, 丘一帆 等. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮 [J]. 材料研究学报, 2023, 37(10): 781
doi: 10.11901/1005.3093.2022.627
[11] Yang Q, Wei S Q, Zhang L M, et al. Ultrasound-assisted synthesis of BiVO4/C-dots/g-C3N4 Z-scheme heterojunction photocatalysts for degradation of minocycline hydrochloride and Rhodamine B: optimization and mechanism investigation [J]. New J. Chem., 2020, 44: 17641
[12] Wu M Q, Ding T, Cai J M, et al. Coaddition of phosphorus and proton to graphitic carbon nitride for synergistically enhanced visible light photocatalytic degradation and hydrogen evolution [J]. ACS Sustain. Chem. Eng., 2018, 6: 8167
[13] Xia P F, Zhu B C, Yu J G, et al. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction [J]. J. Mater. Chem., 2017, 5A: 3230
[14] Li Z Z, Li H Z, Wang S J, et al. Mesoporous black TiO2/MoS2/Cu2S hierarchical tandem heterojunctions toward optimized photothermal-photocatalytic fuel production [J]. Chem. Eng. J., 2022, 427: 131830
[15] Lin H W, Zhang K, Yang G L, et al. Ultrafine nano 1T-MoS2 monolayers with NiOx as dual co-catalysts over TiO2 photoharvester for efficient photocatalytic hydrogen evolution [J]. Appl. Catal., 2020, 279B: 119387
[16] Nam G H, He Q Y, Wang X Z, et al. In‐plane anisotropic properties of 1T′‐MoS2 layers [J]. Adv. Mater., 2019, 31: 1807764
[17] Xu H, Yi J J, She X J, et al. 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution [J]. Appl. Catal., 2018, 220B: 379
[18] Sardar W, Ali G, Jiang F C, et al. Systematically designed g-C3N4/rGO/MoS2 nanocomposite for enhanced photocatalytic performance [J]. Curr. Appl. Phys., 2024, 57: 42
[19] Moghimifar Z, Yazdani F, Tabar-Heydar K, et al. Photocatalytic hydrogen evolution under visible light using MoS2/g-C3N4 nano-photocatalysts [J]. Catal. Lett., 2024, 154: 1255
[20] Wang Z N, Lu D Z, Pan J C, et al. Efficient photocatalytic dehydrogenation and synergistic selective oxidation of benzyl alcohol to benzaldehyde for Zn0.5Cd0.5S co-modified with MoS2 nanoflowers and g-C3N4 nanosheets [J]. Appl. Surf. Sci., 2023, 640: 158384
[21] Balakrishnan A, Suryaa K V, Tripathy H, et al. Phosphorylated g-C3N4/sulfur self-doped g-C3N4 homojunction carboxymethyl cellulose beads: An efficient photocatalyst for H2O2 production [J]. J. Colloid Interface Sci., 2024, 663: 1087
[22] Xue Y J, Ji Y H, Wang X Y, et al. Heterostructuring noble-metal-free 1T' phase MoS2 with g-C3N4 hollow nanocages to improve the photocatalytic H2 evolution activity [J]. Green Energy Environ., 2023, 8: 864
[23] Liang Z Q, Meng X F, Xue Y J, et al. Facile preparation of metallic 1T phase molybdenum selenide as cocatalyst coupled with graphitic carbon nitride for enhanced photocatalytic H2 production [J]. J. Colloid Interface Sci., 2021, 598: 172
[24] Mao Z Y, Chen J J, Yang Y F, et al. Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution [J]. ACS Appl. Mater. Interfaces, 2017, 9: 12427
[25] Liu X, Han X L, Liang Z Q, et al. Phosphorous-doped 1T-MoS2 decorated nitrogen-doped g-C3N4 nanosheets for enhanced photocatalytic nitrogen fixation [J]. J. Colloid Interface Sci., 2022, 605: 320
[26] Liang Z, Xue Y, Wang X, et al. Structure engineering of 1T/2H multiphase MoS2 via oxygen incorporation over 2D layered porous g-C3N4 for remarkably enhanced photocatalytic hydrogen evolution [J]. Mater. Today Nano, 2022, 18: 100204
[27] Sun B T, Liang Z Q, Qian Y Y, et al. Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS [J]. ACS Appl. Mater. Interfaces, 2020, 12: 7257
[28] Han Z Z, Ning X F, Yin Z Q, et al. Enhancement of photocatalytic activity for overall water splitting by inhibiting reverse reactions and photocorrosion of C3N4 via modified with TiO2 thin layer [J]. Int. J. Hydrog. Energy, 2024, 59: 856
[29] Peng Y H, Geng M J, Yu J Q, et al. Vacancy-induced 2H@1T MoS2 phase-incorporation on ZnIn2S4 for boosting photocatalytic hydrogen evolution [J]. Appl. Catal., 2021, 298B: 120570
[30] Shi S L, Sun Z X, Hu Y H. Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2 [J]. J. Mater. Chem., 2018, 6A(47) : 23932
[31] Palai A, Panda N R, Sahu D. Novel ZnO blended SnO2 nanocatalysts exhibiting superior degradation of hazardous pollutants and enhanced visible photoemission properties [J]. J. Mol. Struct., 2021, 1244: 131245
[32] Viñes F, Iglesias-Juez A, Illas F, et al. Hydroxyl identification on ZnO by infrared spectroscopies: theory and experiments [J]. J. Phys. Chem., 2014, 118C(3) : 1492
[33] Chen Y L, Su F Y, Xie H Q, et al. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution [J]. Chem. Eng. J., 2021, 404: 126498
[34] Sahu D, Panda N R. Synthesis of novel nanocomposite of g-C3N4 coated ZnO-MoS2 for energy storage and photocatalytic applications [J]. Chemosphere, 2024, 350: 141014
[35] Wu Z S, He X F, Xue Y T, et al. Cyclodextrins grafted MoS2/g-C3N4 as high-performance photocatalysts for the removal of glyphosate and Cr (VI) from simulated agricultural runoff [J]. Chem. Eng. J., 2020, 399: 125747
[36] Tian S C, Zhang X H, Zhang Z H. Capacitive deionization with MoS2/g-C3N4 electrodes [J]. Desalination, 2020, 479: 114348
[37] Li W Q, Wang Y X, Li Y M, et al. Metal organic framework decorated with molybdenum disulfide for visible-light-driven reduction of hexavalent chromium: Performance and mechanism [J]. J. Clean. Prod., 2021, 318: 128513
[38] Fang Z, Li Q, Su L, et al. Efficient synergy of photocatalysis and adsorption of hexavalent chromium and rhodamine B over Al4SiC4/rGO hybrid photocatalyst under visible-light irradiation [J]. Appl. Catal., 2019, 241B: 548
[39] Sun Y W, Chen C, Qi X, et al. Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) heterojunction and its performance in photocatalytic reduction of Cr(VI) [J]. Chin. J. Mater. Res., 2023, 37(11): 871
[39] 孙玉伟, 陈 畴, 祁 昕 等. Ag3PO4/MIL-125(Ti) Z型异质结的构建及其光催化还原Cr(VI)的性能 [J]. 材料研究学报, 2023, 37(11): 871
doi: 10.11901/1005.3093.2022.669
[1] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[2] 马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
[3] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[4] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[5] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[6] 唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.
[7] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[8] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[9] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[11] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[12] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[13] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[14] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[15] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.