Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (9): 673-682    DOI: 10.11901/1005.3093.2024.336
  研究论文 本期目录 | 过刊浏览 |
纳米Ag0@ACF材料的制备及其对气态碘的吸附性能
詹杰1, 陈小江2, 邹之利3, 苏兴东1, 谢世宇4, 江亮2, 王金铃5, 王烈林2()
1.中广核研究院有限公司 深圳 518028
2.西南科技大学 核环境安全技术创新中心 绵阳 621010
3.阳江核电有限公司 阳江 529500
4.中广核苍南核电有限公司 温州 325800
5.长春工业大学化学工程学院 长春 130012
Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine
ZHAN Jie1, CHEN Xiaojiang2, ZOU Zhili3, SU Xingdong1, XIE Shiyu4, JIANG Liang2, WANG Jinling5, WANG Lielin2()
1.China Nuclear Power Technology Research Institute, Shenzhen 518028, China
2.Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang 621010, China
3.Yangjiang Nuclear Power Co., Ltd., Yangjiang 529500, China
4.CGN Cangnan Nuclear Power Co., Ltd., Wenzhou 325800, China
5.School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
引用本文:

詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
Jie ZHAN, Xiaojiang CHEN, Zhili ZOU, Xingdong SU, Shiyu XIE, Liang JIANG, Jinling WANG, Lielin WANG. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. Chinese Journal of Materials Research, 2025, 39(9): 673-682.

全文: PDF(9743 KB)   HTML
摘要: 

以活性炭纤维为模板,用水热改性和原位自还原方法制备活性炭纤维负载纳米银Ag0@ACF吸附材料,并使用SEM-EDS、XRD、BET和XPS等手段对其表征,研究了这种材料对气态碘的吸附性能。结果表明:纳米银均匀地负载在微孔活性炭纤维材料中成为高比表面积、高反应活性的Ag0@ACF复合材料。4%Ag0@ACF材料对气态单质碘和甲基碘的吸附容量分别为2.25 g/g和0.48 g/g,分别比活性炭纤维材料提高2.5倍和3.5倍。随着改性剂浓度的提高Ag0@ACF对气态碘的吸附容量随之提高;在130℃,改性材料的吸附性能仍较为优异。对这种材料的吸附动力学和机理分析表明,Ag0@ACF吸附气态碘时纳米银与碘发生化学反应生成了稳定的AgI,即发生了稳定的化学吸附行为;高反应活性的纳米Ag0与丰富多孔结构的活性炭纤维材料结合,实现了对气态碘的高速和高效捕集。

关键词 无机非金属材料放射性气态碘Ag0@ACF水热改性原位自还原化学吸附    
Abstract

Radioactive gaseous iodine produced during the operation of nuclear reactors needs to be handled safely and efficiently. In this study, a nano-silver loading activated carbon fiber material Ag0@ACF was successfully synthesized by hydrothermal modification and in situ reduction methods, and then the Ag0@ACF material was characterized by SEM-EDS, XRD, BET, and XPS to evaluate the iodine adsorption performance of Ag0@ACF. The results show that the nano-silver particulates were uniformly loaded on the microporous activated carbon fiber material, the acquired Ag0@ACF composite exhibited high specific surface area and high reactivity. Its adsorption capacity of gaseous elemental iodine and methyl iodine reached 2.25 g/g and 0.48 g/g, respectively, the adsorption performance was increased by 2.5 times and 3.5 times in contrast to the blank activated carbon fiber material. With the increase of modifier concentration, the adsorption capacity of Ag0@ACF for gaseous iodine increases. The material still showed excellent adsorption performance (I2: 2.30 g/g, CH3I: 0.51 g/g) even at 130 oC. Through the analysis of material adsorption kinetics and mechanisms, the adsorption of Ag0@ACF materials for gaseous iodine is a chemical reaction between nano-silver and iodine to form a stable AgI, which is a stable chemical adsorption behavior. The highly reactive silver nanoparticles combined with the rich porous structure of activated carbon fiber materials can achieve rapid and efficient capture of gaseous iodine.

Key wordsinorganic non-metallic materials    radioactive gaseous iodine    Ag0@ACF    hydrothermal modification    in situ self-reduction    chemical adsorption
收稿日期: 2024-08-15     
ZTFLH:  TQ124.6  
基金资助:国家自然科学基金(21101129);国家自然科学基金(41502028);深圳市科技创新委员会技术攻关重点项目(JSGG20200924171000001);四川省自然科学基金(2022NSFSC0252);深圳市国防科工办“揭榜挂帅”行动(JBGS2024-431-004)
通讯作者: 王烈林,教授,wanglielin@swust.edu.cn,研究方向为核废物与环境安全
Corresponding author: WANG Lielin, Tel: 15882867099, E-mail: wanglielin@swust.edu.cn
作者简介: 詹 杰,男,1993年生,硕士生
图1  实验装置示意图
图2  ACF和Ag0@ACF复合材料的SEM照片以及Ag0@ACF的EDS-Mapping能谱
图3  ACF、Ag0@ACF的XRD谱
AdsorbentSpecific surface area / m2·g-1Pore volume /cc·g-1
ACF18160.842
1%Ag0@ACF15620.68
2%Ag0@ACF14030.642
3%Ag0@ACF12870.578
4%Ag0@ACF10950.492
5%Ag0@ACF9150.421
表1  Ag0@ACF的比表面积和孔容
图4  N2的吸脱附曲线、ACF的孔径分布和5%Ag0@ACF的孔径分布
图5  Ag0@ACF材料对单质碘及甲基碘的吸附容量
图6  吸附时间对单质碘及甲基碘吸附性能的影响
AdsorbentAdsorption time / hAdsorption capacity of elemental iodine/methyl iodide / g·g-1
Th-UiO-66-MOFs[24]50.96/-
MOF membrane[25]360.6/-
NaY-NH4F-Bi2S3[26]100.49/-
Cu-BTC@PES[27]750.63/-
Cu0-SBA-15[12]10.95/-
ACF-TEDA[14]41.85/0.4
Ag0@ACF(this work)12.25/0.48
表2  不同吸附材料对气态碘的吸附容量
图7  吸附温度对单质碘及甲基碘吸附性能的影响
图8  气态单质碘和气态甲基碘的吸附准一阶模型拟合曲线和准二阶模型拟合曲线
Adsorption kinetics of gaseous iodine on Ag0@ACFPseudo first-orderPseudo second-order
qeK1R2qeK2R2
I21.01230.0420.192.33041.74550.99
CH3I0.11470.52890.130.38302.32680.99
表3  Ag0@ACF对气态碘的吸附动力学参数
图9  材料吸附单质碘和甲基碘的SEM-EDS图
图10  吸附碘样品的XRD谱和XPS能谱、吸附碘I 3d双峰谱对比、吸附碘Ag 3d双峰谱对比
[1] Li B Y, Dong X L, Wang H, et al. Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps [J]. Nat. Commun., 2017, 8(1): 485
doi: 10.1038/s41467-017-00526-3 pmid: 28883637
[2] Maugeri E A, Neuhausen J, Eichler R, et al. Adsorption of volatile polonium and bismuth species on metals in various gas atmospheres: Part I – Adsorption of volatile polonium and bismuth on gold [J]. Radiochim. Acta, 2016, 104(11): 757
[3] Liu R, Zhang W, Chen Y T, et al. Adsorption of iodine by ZIF materials [J]. J. Inorg. Mater., 2020, 35(3): 345
doi: 10.15541/jim20190351
[3] 刘 蓉, 张 炜, 陈元涛 等. ZIF材料对碘的吸附特性研究 [J]. 无机材料学报, 2020, 35(3): 345
[4] Evron J M, Esfandiari N H, Papaleontiou M. Cancer incidence and mortality following treatment of hyperthyroidism with radioactive iodine [J]. Curr. Opin. Endocrinol. Diabetes Obes., 2020, 27(5): 323
doi: 10.1097/MED.0000000000000561 pmid: 32773569
[5] Zhu Y Q, Chen K W, Zhang J L, et al. Preparation and adsorption properties of Cu-Zn@C with ZIF-8 template [J]. China Powder Sci. Technol., 2022, 28(3): 50
[5] 朱玉琦, 陈凯伟, 张佳莉 等. 以ZIF-8为模板的Cu-Zn@C制备与吸附性能 [J]. 中国粉体技术, 2022, 28(3): 50
[6] Ma Y, Liu Q, Dong L, et al. Reviews on methods for air-bone radioiodine capture [J]. J. Shanxi Univ. (Nat. Sci. Ed.), 2017, 40(3): 515
[6] 马 英, 刘 群, 董 磊 等. 气态放射性碘的捕集方法综述 [J]. 山西大学学报(自然科学版), 2017, 40(3): 515
[7] Riley B J, Vienna J D, Strachan D M, et al. Materials and processes for the effective capture and immobilization of radioiodine: a review [J]. J. Nucl. Mater., 2016, 470: 307
[8] Sun H X, La P Q, Zhu Z Q, et al. Capture and reversible storage of volatile iodine by porous carbon with high capacity [J]. J. Mater. Sci., 2015, 50(22): 7326
[9] Hughes J T, Sava D F, Nenoff T M, et al. Thermochemical evidence for strong iodine chemisorption by ZIF-8 [J]. J. Am. Chem. Soc., 2013, 135(44): 16256
doi: 10.1021/ja406081r pmid: 24147801
[10] Soelberg N R, Garn T G, Greenhalgh M R, et al. Radioactive iodine and krypton control for nuclear fuel reprocessing facilities [J]. Sci. Technol. Nucl. Install., 2013, 2013: 702496
[11] Wu L, Sawada J A, Kuznicki D B, et al. Iodine adsorption on silver-exchanged titania-derived adsorbents [J]. J. Radioanal. Nucl. Chem., 2014, 302(1): 527
[12] He X M, Chen L, Xiao X, et al. Improved utilization of Cu0 for efficient adsorption of iodine in gas and solution by mesoporous Cu0-SBA-15 via solvothermal reduction method [J]. Chem. Eng. J., 2023, 462: 142175
[13] Yue L Q. Study on the adsorption and desorption performance of radioactive methyl iodine by modified activated carbon [D]. Beijing: China Academy of Engineering Physics, 2013
[13] 岳龙清. 改性活性炭对放射性甲基碘吸附与解吸性能的研究 [D]. 北京: 中国工程物理研究院, 2013
[14] Wang L L, Liu F, Zhan J, et al. Adsorptive removal of gaseous methyl iodide by triethylenediamine modified activated carbon fiber [J]. At. Energy Sci. Technol., 2023, 57(9): 1800
[14] 王烈林, 刘 峰, 詹 杰 等. 三乙烯二胺改性活性炭纤维对气态甲基碘吸附研究 [J]. 原子能科学技术, 2023, 57(9): 1800
doi: 10.7538/yzk.2022.youxian.0869
[15] Ampelogova N I, Kritskii V G, Krupennikova N I, et al. Carbon-fiber adsorbent materials for removing radioactive iodine from gases [J]. At. Energy, 2002, 92(4): 336
[16] Matyáš J, Engler R K. Assessment of methods to consolidate iodine-loaded silver-functionalized silica aerogel [R]. Richland: Pacific Northwest National Laboratory, 2013
[17] Ye M L, Tang J J, Ding X, et al. A study of the adsorption properties of the silver nitrate impregnated mordenite for airborne radioiodine [J]. J. Nucl. Radiochem., 1991, 13(3): 169
[17] 叶明吕, 唐静娟, 丁 旭 等. 附银丝光沸石对气载放射性碘的吸附特性的研究 [J]. 核化学与放射化学, 1991, 13(3): 169
[18] Xiong W, Cao Q, Wang H J, et al. Study on dynamic adsorption of gaseous iodine by silver loaded mordenite and alumina [J]. Nucl. Power Eng., 2019, 40(1): 131
[18] 熊 伟, 曹 骐, 王海军 等. 载银丝光沸石和载银氧化铝对气态碘的吸附研究 [J]. 核动力工程, 2019, 40(1): 131
[19] Zhao G X, Li J X, Ren X M, et al. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management [J]. Environ. Sci. Technol., 2011, 45(24): 10454
[20] Jia L, Liu Y, Zhang G H, et al. Research progress in the removal of radioactive iodonucleoid from the water body [J]. Ind. Water Treat., 2015, 35(7): 10
[20] 贾 麟, 刘 阳, 张光辉 等. 去除水体中放射性碘核素的研究进展 [J]. 工业水处理, 2015, 35(7): 10
[21] Qiao Z J, Li J J, Zhao N Q, et al. Pore size and surface properties of activated carbon fibres modified by high temperature treatment [J]. New Carbon Mater., 2004, 19(1): 53
[21] 乔志军, 李家俊, 赵乃勤 等. 高温热处理对活性炭纤维微孔及表面性能的影响 [J]. 新型炭材料, 2004, 19(1): 53
[22] Mao P, Liu Y, Jiao Y, et al. Enhanced uptake of iodide on Ag@Cu2O nanoparticles [J]. Chemosphere, 2016, 164: 396
[23] Mao P, Qi B B, Liu Y, et al. AgII doped MIL-101 and its adsorption of iodine with high speed in solution [J]. J. Solid State Chem., 2016, 237: 274
[24] Li Z J, Ju Y, Lu H J, et al. Cover feature: boosting the iodine adsorption and radioresistance of Th-UiO-66 MOFs via aromatic substitution (Chem. Eur. J. 4/2021) [J]. Chem.-A Eur. J., 2021, 27(4): 1162
[25] Li M, Yuan G Y, Zeng Y, et al. Flexible surface-supported MOF membrane via a convenient approach for efficient iodine adsorption [J]. J. Radioanal. Nucl. Chem., 2020, 324: 1167
[26] Jiang M, Zhu L, Zhao Q, et al. Novel synthesis of NaY-NH4F-Bi2S3 composite for enhancing iodine capture [J]. Chem. Eng. J., 2022, 443: 136477
[27] Zhao Q, Zhu L, Lin G H, et al. Controllable synthesis of porous Cu-BTC@polymer composite beads for iodine capture [J]. ACS Appl. Mater. Interfaces, 2019, 11: 42635
[28] Zhu D D, Hu Y C, Yu H D, et al. The study of activated carbon fiber's capability of adsorbing precious metal ion [J]. Contemp. Chem. Ind., 2008, 37(2): 136
[28] 朱冬冬, 胡玉才, 于会弟 等. 活性炭纤维对贵金属离子吸附性能的研究 [J]. 当代化工, 2008, 37(2): 136
[29] Chen X J, Wang L L, Ding C C, et al. Highly efficient removal of radioactive iodine anions by nano silver modified activated carbon fiber [J]. Appl. Surf. Sci., 2024, 643: 158644
[30] Li H L, Li Y. Ag-doped silicon-based nanospheres for the efficient capture and remove of iodide anions from solutions [J]. Appl. Surf. Sci., 2019, 496: 143707
[31] Ye H F, Lin H L, Cao J, et al. Enhanced visible light photocatalytic activity and mechanism of BiPO4 nanorods modified with AgI nanoparticles [J]. J. Mol. Catal., 2015, 397A: 85
[1] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[2] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[3] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[4] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[5] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[6] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[7] 陈室雨, 李卫, 旷海燕, 高绍巍, 庞东方. 一种稀土Lu3+ 掺杂无铅压电陶瓷的介电、铁电和压电性能[J]. 材料研究学报, 2025, 39(4): 272-280.
[8] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[9] 邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
[10] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[11] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[12] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[13] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[14] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[15] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.