|
|
|
| 2 GPa超高强中锰钢中的夹杂物对其高周疲劳性能的影响 |
李昌鹏1, 庞建超2, 王子龙1, 李云杰1( ), 李琳琳1( ) |
1.东北大学 数字钢铁全国重点实验室 沈阳 110819 2.中国科学院金属研究所 沈阳 110016 |
|
| Effect of Size and Distribution of Inclusions on High-cycle Fatigue Properties of a 2 GPa-graded Ultra-high-strength Medium-Mn Steel |
LI Changpeng1, PANG Jianchao2, WANG Zilong1, LI Yunjie1( ), LI Linlin1( ) |
1.State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
李昌鹏, 庞建超, 王子龙, 李云杰, 李琳琳. 2 GPa超高强中锰钢中的夹杂物对其高周疲劳性能的影响[J]. 材料研究学报, 2025, 39(12): 892-900.
Changpeng LI,
Jianchao PANG,
Zilong WANG,
Yunjie LI,
Linlin LI.
Effect of Size and Distribution of Inclusions on High-cycle Fatigue Properties of a 2 GPa-graded Ultra-high-strength Medium-Mn Steel[J]. Chinese Journal of Materials Research, 2025, 39(12): 892-900.
| [1] |
Wan X R, Xu C G. High-Strength and Ultra-High-Strength Steels [M]. Beijing: China Machine Press, 1988: 2
|
| [1] |
万翛如, 许昌淦. 高强度及超高强度钢 [M]. 北京: 机械工业出版社, 1988: 2
|
| [2] |
Dong H. Technological progresses of research activities on steel products [J]. China Metall., 2008, 18(10): 1
|
| [2] |
董 瀚. 钢铁材料研发的技术进展 [J]. 中国冶金, 2008, 18(10): 1
|
| [3] |
He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177
pmid: 28839008
|
| [4] |
Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413
pmid: 32381592
|
| [5] |
Li Y J, Yuan G, Li L L, et al. Ductile 2-GPa steels with hierarchical substructure [J]. Science, 2023, 379: 168
doi: 10.1126/science.add7857
pmid: 36634172
|
| [6] |
Wang B, Zhang Z J, Shao C W, et al. Improving the high-cycle fatigue lives of Fe-30Mn-0.9C twinning-induced plasticity steel through pre-straining [J]. Metall. Mater. Trans., 2015, 46A: 3317
|
| [7] |
Rohit B, Muktinutalapati N R. Fatigue behavior of 18% Ni maraging steels: A review [J]. J. Mater. Eng. Perform., 2021, 30: 2341
doi: 10.1007/s11665-021-05583-w
|
| [8] |
Wang P, Wang B, Liu Y, et al. Effects of inclusion types on the high-cycle fatigue properties of high-strength steel [J]. Scr. Mater., 2022, 206: 114232
doi: 10.1016/j.scriptamat.2021.114232
|
| [9] |
Vantadori S, Ronchei C, Scorza D, et al. Influence of non-metallic inclusions on the high cycle fatigue strength of steels [J]. Int. J. Fatigue, 2022, 154: 106553
doi: 10.1016/j.ijfatigue.2021.106553
|
| [10] |
Sharma A, Oh M C, Ahn B. Recent advances in very high cycle fatigue behavior of metals and alloys-a review [J]. Metals, 2020, 10: 1200
doi: 10.3390/met10091200
|
| [11] |
Sakai T, Oguma N, Morikawa A. Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue [J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38: 1305
doi: 10.1111/ffe.v38.11
|
| [12] |
Pang J C. Investigation on fatigue and fracture of high-strength metallic materials [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012
|
| [12] |
庞建超. 高强度金属材料的疲劳与断裂研究 [D]. 沈阳: 中国科学院金属研究所, 2012
|
| [13] |
Wang B, Zhang P, Duan Q Q, et al. Optimizing the fatigue strength of 18Ni maraging steel through ageing treatment [J]. Mater. Sci. Eng., 2017, 707A: 674
|
| [14] |
Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. Int. J. Fatigue, 1994, 16: 163
doi: 10.1016/0142-1123(94)90001-9
|
| [15] |
Yang Z G, Zhang J M, Li S X, et al. On the critical inclusion size of high strength steels under ultra-high cycle fatigue [J]. Mater. Sci. Eng., 2006, 427A: 167
|
| [16] |
Witte M, Lesch C. On the improvement of measurement accuracy of retained austenite in steel with X-ray diffraction [J]. Mater. Charact., 2018, 139: 111
doi: 10.1016/j.matchar.2018.02.002
|
| [17] |
Bentley A P, Smith G C. Phase transformation of austenitic stainless steels as a result of cathodic hydrogen charging [J]. Metall. Trans., 1986, 17A: 1593
|
| [18] |
Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2013, 564A: 331
|
| [19] |
Liu C, Zhao M C, Zhao Y C, et al. Ultra-high cycle fatigue behavior of a novel 1.9 GPa grade super-high strength maraging stainless steel [J]. Mater. Sci. Eng., 2019, 755A: 50
|
| [20] |
Li S X, Weng Y Q, Hui W J, et al. Very High Cycle Fatigue Properties of High Strength Steels: Effects of Nonmetallic Inclusions [M]. Beijing: Metallurgical Industry Press, 2010
|
| [20] |
李守新, 翁宇庆, 惠卫军 等. 高强度钢超高周疲劳性能: 非金属夹杂物的影响 [M]. 北京: 冶金工业出版社, 2010
|
| [21] |
Coffin L F. A study of the effects of cyclic thermal stresses on a ductile metal [J]. J. Fluids Eng., 1954, 76: 931
|
| [22] |
Li S X. Effects of inclusions on very high cycle fatigue properties of high strength steels [J]. Int. Mater. Rev., 2012, 57: 92
doi: 10.1179/1743280411Y.0000000008
|
| [23] |
Furuya Y, Matsuoka S, Abe T, et al. Gigacycle fatigue properties for high-strength low-alloy steel at 100 Hz, 600 Hz, and 20 kHz [J]. Scr. Mater., 2002, 46: 157
doi: 10.1016/S1359-6462(01)01213-1
|
| [24] |
Yang C Y, Luan Y K, Li D Z, et al. Very high cycle fatigue properties of bearing steel with different aluminum and sulfur content [J]. Int. J. Fatigue, 2018, 116: 396
doi: 10.1016/j.ijfatigue.2018.06.047
|
| [25] |
Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime [J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 735
doi: 10.1046/j.1460-2695.2002.00576.x
|
| [26] |
Fan M, Zhang Y M, Xiao Z M. Small scale yielding analysis for a disclination-nucleated Zener-Stroh crack interacting with a circular inclusion [J]. Int. J. Damage Mech., 2017, 26: 541
doi: 10.1177/1056789516636946
|
| [27] |
Gao C, Yang M Q, Pang J C, et al. Abnormal relation between tensile and fatigue strengths for a high-strength low-alloy steel [J]. Mater. Sci. Eng., 2022, 832A: 142418
|
| [28] |
Shin J C, Lee S, Hwa R J. Correlation of microstructure and fatigue properties of two high-strength spring steels [J]. Int. J. Fatigue, 1999, 21: 571
doi: 10.1016/S0142-1123(99)00010-9
|
| [29] |
Zhang J M, Li S X, Yang Z G, et al. Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime [J]. Int. J. Fatigue, 2007, 29: 765
doi: 10.1016/j.ijfatigue.2006.06.004
|
| [30] |
Sankaran S, Subramanya Sarma V, Padmanabhan K A, et al. High cycle fatigue behaviour of a multiphase microalloyed medium carbon steel: a comparison between ferrite-pearlite and tempered martensite microstructures [J]. Mater. Sci. Eng., 2003, 362A: 249
|
| [31] |
Yang Z G, Yao G, Li G Y, et al. The effect of inclusions on the fatigue behavior of fine-grained high strength 42CrMoVNb steel [J]. Int. J. Fatigue, 2004, 26: 959
doi: 10.1016/j.ijfatigue.2004.01.009
|
| [32] |
Huang H W, Wang Z B, Lu J, et al. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer [J]. Acta Mater., 2015, 87: 150
doi: 10.1016/j.actamat.2014.12.057
|
| [33] |
Agarwal N, Kahn H, Avishai A, et al. Enhanced fatigue resistance in 316L austenitic stainless steel due to low-temperature paraequilibrium carburization [J]. Acta Mater., 2007, 55: 5572
doi: 10.1016/j.actamat.2007.06.025
|
| [34] |
Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions [M]. Amsterdam: Elsevier, 2002
|
| [35] |
Shi G, Atkinson H V, Sellars C M, et al. Application of the generalized Pareto distribution to the estimation of the size of the maximum inclusion in clean steels [J]. Acta Mater., 1999, 47: 1455
doi: 10.1016/S1359-6454(99)00034-8
|
| [36] |
Atkinson H V, Shi G, Sellars C M, et al. Statistical prediction of inclusion sizes in clean steels [J]. Mater. Sci. Technol., 2000, 16: 1175
doi: 10.1179/026708300101506920
|
| [37] |
Yang Z G, Li S X, Zhang J M, et al. The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime [J]. Acta Mater., 2004, 52: 5235
doi: 10.1016/j.actamat.2004.06.031
|
| [38] |
Wang P, Zhang P, Wang B, et al. Fatigue cracking criterion of high-strength steels induced by inclusions under high-cycle fatigue [J]. J. Mater. Sci. Technol., 2023, 154: 114
doi: 10.1016/j.jmst.2023.02.006
|
| [39] |
Wang P. Investigation on high-cycle fatigue damage mechanism and fatigue performance optimization of GCr15 bearing steels [D]. Hefei: University of Science and Technology of China, 2023
|
| [39] |
王 鹏. GCr15轴承钢高周疲劳损伤机制与疲劳性能优化研究 [D]. 合肥: 中国科学技术大学, 2023
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|