Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (12): 892-900    DOI: 10.11901/1005.3093.2025.041
  研究论文 本期目录 | 过刊浏览 |
2 GPa超高强中锰钢中的夹杂物对其高周疲劳性能的影响
李昌鹏1, 庞建超2, 王子龙1, 李云杰1(), 李琳琳1()
1.东北大学 数字钢铁全国重点实验室 沈阳 110819
2.中国科学院金属研究所 沈阳 110016
Effect of Size and Distribution of Inclusions on High-cycle Fatigue Properties of a 2 GPa-graded Ultra-high-strength Medium-Mn Steel
LI Changpeng1, PANG Jianchao2, WANG Zilong1, LI Yunjie1(), LI Linlin1()
1.State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

李昌鹏, 庞建超, 王子龙, 李云杰, 李琳琳. 2 GPa超高强中锰钢中的夹杂物对其高周疲劳性能的影响[J]. 材料研究学报, 2025, 39(12): 892-900.
Changpeng LI, Jianchao PANG, Zilong WANG, Yunjie LI, Linlin LI. Effect of Size and Distribution of Inclusions on High-cycle Fatigue Properties of a 2 GPa-graded Ultra-high-strength Medium-Mn Steel[J]. Chinese Journal of Materials Research, 2025, 39(12): 892-900.

全文: PDF(12326 KB)   HTML
摘要: 

测试了一种新型2 GPa级超高强中锰钢的高周疲劳性能并使用X射线衍射、扫描电镜等手段观察和分析疲劳断口形貌、相组成、夹杂物的尺寸和分布,研究了夹杂物对其高周疲劳性能的影响。结果表明,这种超高强中锰钢的高周疲劳均由夹杂物起裂,包括表面夹杂物、亚表面夹杂物以及内部夹杂物引起的三种开裂形式。随着疲劳裂纹萌生的位置由表面逐渐向内部过渡,这种钢的疲劳寿命延长。超高强中锰钢的疲劳性能对夹杂物的尺寸极其敏感,随着夹杂物起裂位置到基体表面距离的增加,其尺寸逐渐增大。同时,在应力幅相同的条件下,随着夹杂物尺寸的减小,疲劳寿命逐渐延长。与其他中高强度钢相比,这种新型2 GPa级超高强中锰钢的疲劳强度与疲劳比优异。其原因是,这种钢的多级组织使其具有优异的塑性。高塑性使局部的应力集中分散,使疲劳过程中裂纹的萌生和扩展需要更高的能量和更大的夹杂物临界尺寸。

关键词 金属材料2 GPa级中锰钢高周疲劳非金属夹杂物疲劳强度临界夹杂物尺寸    
Abstract

Inclusions can be easily introduced into steels during smelting, and they have an important impact on the fatigue cracking behavior and fatigue strength of the steels. As the strength of the steel increases, its sensitivity to microstructural defects also increases, yet the fatigue strength does not necessarily increase monotonically. Here, the high-cycle fatigue properties of a newly-developed ultra-high-strength medium-Mn steel with tensile strength higher than 2 GPa were investigated. The morphology, phase composition, distribution and size of the inclusions on the fatigue fracture were observed and analyzed by means of X-ray diffraction and scanning electron microscopy. The results indicate that the high-cycle fatigue of the ultra-high-strength steel is caused by the initiation of cracks at inclusions, which exhibit three types: surface inclusions, subsurface inclusions, and internal inclusions. The fatigue life increases as the crack initiation sites changing from surface to internal inclusions. The fatigue properties of ultra-high-strength steel are extremely sensitive to the size of inclusions. The critical size of the inclusions gradually increases as the distance between the inclusions and the test specimen surface increases. Under the same stress amplitude, the fatigue life increases with the decrease of the inclusion size. Compared with other medium- and high-strength steels, the current steel has high fatigue strength and fatigue ratio, which can be attributed to its high strength and good plasticity. The gradual transformation induced plasticity effect helped to disperse local stress concentration and dissipate plastic work to retard growth of fatigue cracks. Consequently, larger critical inclusion sizes are required for crack initiation and propagation during fatigue.

Key wordsmetallic materials    2 GPa-graded medium-Mn steel    high-cycle fatigue    non-metallic inclusions    fatigue strength    critical inclusion size
收稿日期: 2025-01-16     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(52371101);东北大学数字钢铁全国重点实验室自主课题(ZZ2021003)
通讯作者: 李琳琳,教授,lill@ral.neu.edu.cn,研究方向为金属材料的疲劳损伤机制研究;
李云杰,教授,liyunjie@ral.neu.edu.cn,研究方向为超高强钢强韧化理论及应用研究
Corresponding author: LI Linlin, Tel: 15140093270, E-mail: lill@ral.neu.edu.cn;
LI Yunjie, Tel: 15140037408, E-mail: liyunjie@ral.neu.edu.cn
作者简介: 李昌鹏,男,2000年生,硕士生
CMnSiVFe
0.397.810.5Bal.
表1  实验用2 GPa级中锰钢的化学成分
图1  实验用2 GPa级中锰钢样品的形状和尺寸示意图
图2  实验用2 GPa级中锰钢的微观组织和XRD谱
图3  实验钢的静态力学性能
图4  实验钢的S-N曲线和疲劳强度
图5  表面夹杂物疲劳开裂断口的形貌
图6  亚表面夹杂物疲劳开裂断口形貌
图7  内部夹杂物疲劳开裂断口的形貌
图8  夹杂物位于不同位置的S-N曲线和夹杂物尺寸对疲劳性能的影响
图9  用外推法测得的实验钢中夹杂物的临界尺寸
No. of samplesσ-1 / MPaNf / cyclesareainc / μmMurakami formula
σ-1 / MPaareainc / μm
66001 × 10737.452316.4
86601 × 1078.66045.0
106601 × 10744.95079.2
116801 × 1078.76034.2
136801 × 10714.45544.1
表2  用Murakami公式反推疲劳强度和夹杂物临界尺寸
图10  实验用钢与其他强度钢性能的对比和高周疲劳后的XRD谱
[1] Wan X R, Xu C G. High-Strength and Ultra-High-Strength Steels [M]. Beijing: China Machine Press, 1988: 2
[1] 万翛如, 许昌淦. 高强度及超高强度钢 [M]. 北京: 机械工业出版社, 1988: 2
[2] Dong H. Technological progresses of research activities on steel products [J]. China Metall., 2008, 18(10): 1
[2] 董 瀚. 钢铁材料研发的技术进展 [J]. 中国冶金, 2008, 18(10): 1
[3] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177 pmid: 28839008
[4] Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
[5] Li Y J, Yuan G, Li L L, et al. Ductile 2-GPa steels with hierarchical substructure [J]. Science, 2023, 379: 168
doi: 10.1126/science.add7857 pmid: 36634172
[6] Wang B, Zhang Z J, Shao C W, et al. Improving the high-cycle fatigue lives of Fe-30Mn-0.9C twinning-induced plasticity steel through pre-straining [J]. Metall. Mater. Trans., 2015, 46A: 3317
[7] Rohit B, Muktinutalapati N R. Fatigue behavior of 18% Ni maraging steels: A review [J]. J. Mater. Eng. Perform., 2021, 30: 2341
doi: 10.1007/s11665-021-05583-w
[8] Wang P, Wang B, Liu Y, et al. Effects of inclusion types on the high-cycle fatigue properties of high-strength steel [J]. Scr. Mater., 2022, 206: 114232
doi: 10.1016/j.scriptamat.2021.114232
[9] Vantadori S, Ronchei C, Scorza D, et al. Influence of non-metallic inclusions on the high cycle fatigue strength of steels [J]. Int. J. Fatigue, 2022, 154: 106553
doi: 10.1016/j.ijfatigue.2021.106553
[10] Sharma A, Oh M C, Ahn B. Recent advances in very high cycle fatigue behavior of metals and alloys-a review [J]. Metals, 2020, 10: 1200
doi: 10.3390/met10091200
[11] Sakai T, Oguma N, Morikawa A. Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue [J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38: 1305
doi: 10.1111/ffe.v38.11
[12] Pang J C. Investigation on fatigue and fracture of high-strength metallic materials [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012
[12] 庞建超. 高强度金属材料的疲劳与断裂研究 [D]. 沈阳: 中国科学院金属研究所, 2012
[13] Wang B, Zhang P, Duan Q Q, et al. Optimizing the fatigue strength of 18Ni maraging steel through ageing treatment [J]. Mater. Sci. Eng., 2017, 707A: 674
[14] Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. Int. J. Fatigue, 1994, 16: 163
doi: 10.1016/0142-1123(94)90001-9
[15] Yang Z G, Zhang J M, Li S X, et al. On the critical inclusion size of high strength steels under ultra-high cycle fatigue [J]. Mater. Sci. Eng., 2006, 427A: 167
[16] Witte M, Lesch C. On the improvement of measurement accuracy of retained austenite in steel with X-ray diffraction [J]. Mater. Charact., 2018, 139: 111
doi: 10.1016/j.matchar.2018.02.002
[17] Bentley A P, Smith G C. Phase transformation of austenitic stainless steels as a result of cathodic hydrogen charging [J]. Metall. Trans., 1986, 17A: 1593
[18] Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2013, 564A: 331
[19] Liu C, Zhao M C, Zhao Y C, et al. Ultra-high cycle fatigue behavior of a novel 1.9 GPa grade super-high strength maraging stainless steel [J]. Mater. Sci. Eng., 2019, 755A: 50
[20] Li S X, Weng Y Q, Hui W J, et al. Very High Cycle Fatigue Properties of High Strength Steels: Effects of Nonmetallic Inclusions [M]. Beijing: Metallurgical Industry Press, 2010
[20] 李守新, 翁宇庆, 惠卫军 等. 高强度钢超高周疲劳性能: 非金属夹杂物的影响 [M]. 北京: 冶金工业出版社, 2010
[21] Coffin L F. A study of the effects of cyclic thermal stresses on a ductile metal [J]. J. Fluids Eng., 1954, 76: 931
[22] Li S X. Effects of inclusions on very high cycle fatigue properties of high strength steels [J]. Int. Mater. Rev., 2012, 57: 92
doi: 10.1179/1743280411Y.0000000008
[23] Furuya Y, Matsuoka S, Abe T, et al. Gigacycle fatigue properties for high-strength low-alloy steel at 100 Hz, 600 Hz, and 20 kHz [J]. Scr. Mater., 2002, 46: 157
doi: 10.1016/S1359-6462(01)01213-1
[24] Yang C Y, Luan Y K, Li D Z, et al. Very high cycle fatigue properties of bearing steel with different aluminum and sulfur content [J]. Int. J. Fatigue, 2018, 116: 396
doi: 10.1016/j.ijfatigue.2018.06.047
[25] Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime [J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 735
doi: 10.1046/j.1460-2695.2002.00576.x
[26] Fan M, Zhang Y M, Xiao Z M. Small scale yielding analysis for a disclination-nucleated Zener-Stroh crack interacting with a circular inclusion [J]. Int. J. Damage Mech., 2017, 26: 541
doi: 10.1177/1056789516636946
[27] Gao C, Yang M Q, Pang J C, et al. Abnormal relation between tensile and fatigue strengths for a high-strength low-alloy steel [J]. Mater. Sci. Eng., 2022, 832A: 142418
[28] Shin J C, Lee S, Hwa R J. Correlation of microstructure and fatigue properties of two high-strength spring steels [J]. Int. J. Fatigue, 1999, 21: 571
doi: 10.1016/S0142-1123(99)00010-9
[29] Zhang J M, Li S X, Yang Z G, et al. Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime [J]. Int. J. Fatigue, 2007, 29: 765
doi: 10.1016/j.ijfatigue.2006.06.004
[30] Sankaran S, Subramanya Sarma V, Padmanabhan K A, et al. High cycle fatigue behaviour of a multiphase microalloyed medium carbon steel: a comparison between ferrite-pearlite and tempered martensite microstructures [J]. Mater. Sci. Eng., 2003, 362A: 249
[31] Yang Z G, Yao G, Li G Y, et al. The effect of inclusions on the fatigue behavior of fine-grained high strength 42CrMoVNb steel [J]. Int. J. Fatigue, 2004, 26: 959
doi: 10.1016/j.ijfatigue.2004.01.009
[32] Huang H W, Wang Z B, Lu J, et al. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer [J]. Acta Mater., 2015, 87: 150
doi: 10.1016/j.actamat.2014.12.057
[33] Agarwal N, Kahn H, Avishai A, et al. Enhanced fatigue resistance in 316L austenitic stainless steel due to low-temperature paraequilibrium carburization [J]. Acta Mater., 2007, 55: 5572
doi: 10.1016/j.actamat.2007.06.025
[34] Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions [M]. Amsterdam: Elsevier, 2002
[35] Shi G, Atkinson H V, Sellars C M, et al. Application of the generalized Pareto distribution to the estimation of the size of the maximum inclusion in clean steels [J]. Acta Mater., 1999, 47: 1455
doi: 10.1016/S1359-6454(99)00034-8
[36] Atkinson H V, Shi G, Sellars C M, et al. Statistical prediction of inclusion sizes in clean steels [J]. Mater. Sci. Technol., 2000, 16: 1175
doi: 10.1179/026708300101506920
[37] Yang Z G, Li S X, Zhang J M, et al. The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime [J]. Acta Mater., 2004, 52: 5235
doi: 10.1016/j.actamat.2004.06.031
[38] Wang P, Zhang P, Wang B, et al. Fatigue cracking criterion of high-strength steels induced by inclusions under high-cycle fatigue [J]. J. Mater. Sci. Technol., 2023, 154: 114
doi: 10.1016/j.jmst.2023.02.006
[39] Wang P. Investigation on high-cycle fatigue damage mechanism and fatigue performance optimization of GCr15 bearing steels [D]. Hefei: University of Science and Technology of China, 2023
[39] 王 鹏. GCr15轴承钢高周疲劳损伤机制与疲劳性能优化研究 [D]. 合肥: 中国科学技术大学, 2023
[1] 杨景清, 董文超, 陆善平. δ-铁素体含量对高SiN奥氏体不锈钢焊缝性能的影响[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] 詹杰, 陈小江, 邹之利, 苏兴东, 谢世宇, 江亮, 王金铃, 王烈林. 纳米Ag0@ACF材料的制备及其对气态碘的吸附性能[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] 施渊吉, 程诚, 张海涛, 胡道春, 陈晶晶, 黎军顽. β-SiC半导体器件在滑动摩擦中材料去除行为的纳观分析[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] 谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.