Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (8): 632-640    DOI: 10.11901/1005.3093.2024.443
  研究论文 本期目录 | 过刊浏览 |
富缺陷Pd纳米片的合成和对甘油的电催化氧化性能
谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽()
岭南师范学院化学化工学院 湛江 524048
Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol
TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli()
School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China
引用本文:

谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
Dexin TAN, Shihui CHEN, Xiaoli LUO, Xiaomei NING, Yanli WANG. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. Chinese Journal of Materials Research, 2025, 39(8): 632-640.

全文: PDF(9954 KB)   HTML
摘要: 

以Pd(NO3)2·2H2O为前驱体,在水/乙醇(体积比4∶1)体系中调控十六烷基三甲基溴化铵(CTAB)的用量构建软模板体系,用超声辅助模板技术制备出富缺陷Pd纳米片,使用XRD、FESEM、TEM、UV-vis等手段对其表征,研究了对甘油的电催化氧化(GOR)性能。结果表明,这种富缺陷Pd纳米片有大量的缺陷(晶面扩张、晶格畸变、位错、孪晶界),厚度约为8.10 nm。这种富缺陷Pd纳米片在碱性介质中对甘油的电催化质量活度为4179.82 mA/mg (是商用Pd/C(562.77 mA/mg)的7.43倍),比表面活度为9.12 mA/cm2 (是商业Pd/C(1.57 mA/cm2)的5.81倍)。同时,这种Pd纳米片还具有对GOR的高抗中毒性和良好的稳定性。

关键词 金属材料钯纳米片电催化氧化缺陷    
Abstract

A soft template was constructed by adjusting the amount of CTAB in a water/ethanol solution (volume ratio 4:1) with Pd(NO3)2·2H2O as the Pd precursor, then Pd nanosheets were prepared via ultrasonic-assisted template technology. The nanosheets were characterized by XRD, FESEM, TEM, and UV-vis spectroscopy, and their electrocatalytic oxidation of glycerol was investigated by cyclic voltammetry and chronoamperometry methods. The results revealed that the obtained Pd nanosheets possessed abundant defects, including crystal face expansion, lattice distortion, dislocation, and twin boundary etc. These nanosheets had a thickness of approximately 8.10 nm and exhibited a mass activity of 4179.82 mA/mg for glycerol oxidation in alkaline media, which was 7.43 times higher than that of commercial Pd/C (562.77 mA/mg). Furthermore, the specific activity of the Pd nanosheets was 9.12 mA/cm2, which was 5.81 times greater than that of the commercial Pd/C (1.57 mA/cm2). In addition, these Pd nanosheets also demonstrated high resistance against poisoning and excellent stability during glycerol oxidation reaction (GOR).

Key wordsmetallic materials    Pd nanosheet    electrocatalytic oxidation    defect
收稿日期: 2024-10-29     
ZTFLH:  TG146.3+6  
基金资助:广东省基础与应用基础研究基金(2022A1515011970);岭南师范学院科研团队项目(LT2409)
通讯作者: 王艳丽,教授,ylwang1998@163.com,研究方向为纳米材料构建及电催化性能调控
Corresponding author: WANG Yanli, Tel: (0759)3174029, E-mail: ylwang1998@163.com
作者简介: 谭德新,男,1977年生,副教授
图1  CTAB的紫外可见光谱以及第一和第二CMC
图2  PdNSs的FESEM图和厚度分布
图3  PdNSs的TEM照片和XRD谱
图4  PdNSs的HRTEM图、实线框的FFTs和虚线框放大图
图5  在Pd(NO3)2溶液逐步加入KBr和CTAB的紫外吸收光谱
图6  PdNSs的生长机理演示图
图7  PdNSs和商业Pd/C的循环伏安曲线 (溶液:1 mol/L KOH;扫描速率:50 mV/s)
图8  PdNSs和商业Pd/C的Pd质量归一化CV曲线、ECSA归一化CV曲线、催化剂相应的质量活度和比表面活度(溶液:1 mol/L C3H8O3 + 1 mol/L KOH;扫描速率:50 mV/s)
图9  500次循环加速耐久性实验前后PdNSs和商业Pd/C的CV曲线、基于500次循环起始峰值电流密度PdNSs和商业Pd/C的耐久性以及500次循环后的标准化质量活性(溶液:1 mol/L C3H8O3 + 1 mol/L KOH;扫描速率:50 mV/s)
CatalystsElectrolyteScan rate / mV·s-1ECSA / m2·g-1Specific activity / mA·cm-2Mass activity / mA·mg-1ib / ifRef.
PdNSs1 mol/L KOH + 1 mol/L glycerol5046.319.124179.820.25This work
Pd NPs/C1100.5 mol/L KOH + 1 mol/L glycerol5022.69-10260.34[35]
PdFe/C0.5 mol/L KOH + 1 mol/L glycerol5038.991.10-0.64[36]
PdNi/C1 mol/L KOH + 0.5 mol/L glycerol50-2.2211-[37]
Pd/C1 mol/L KOH + 1 mol/L glycerol5043.30-1150-[38]
AgPd (1∶1)/C2 mol/L KOH + 1.5 mol/L glycerol20--220.27-[39]
Pd3Pb1 mol/L KOH + 1 mol/L glycerol50--916-[40]
表1  近年来关于Pd基催化剂对GOR行为的研究成果[35~40]
图10  PdNSs和商业Pd/C分别在0和-0.3 V电压下的计时电流曲线(溶液:1 mol/L C3H8O3 + 1 mol/L KOH;扫描速率:50 mV/s)
[1] Braun M, Santana C S, Garcia A C, et al. From waste to value-glycerol electrooxidation for energy conversion and chemical production [J]. Curr. Opin. Green Sustainable Chem., 2023, 41: 100829
[2] Velázquez-Hernández I, Álvarez-López A, Álvarez-Contreras L, et al. Electrocatalytic oxidation of crude glycerol from the biodiesel production on Pd-M (M = Ir, Ru or Pt) sub-10 nm nanomaterials [J]. Appl. Surf. Sci., 2021, 545(15): 149055
[3] Arjona N, Rivas S, Álvarez-Contreras L, et al. Glycerol electro-oxidation in alkaline media using Pt and Pd catalysts electrodeposited on three-dimensional porous carbon electrodes [J]. New J. Chem., 2017, 41(4): 1854
[4] Saravani H, Farsadrooh M, Mollashahi M S, et al. Two-dimensional engineering of Pd nanosheets as advanced electrocatalysts toward formic acid oxidation [J]. Int. J. Hydrog. Energy, 2020, 45(41): 21232
[5] Liu J F, Liu H T, Wang Q X, et al. Phosphorus doped PdMo bimetallene as a superior bifunctional fuel cell electrocatalyst [J]. Chem. Eng. J., 2024, 486(15): 150258
[6] Wang J, Zhang W, Dong Z M, et al. One-step CO assisted synthesis of hierarchical porous PdRuCu nanosheets as advanced bifunctional catalysts for hydrogen evolution and glycerol oxidation [J]. Int. J. Hydrog. Energy, 2022, 47(78): 33319
[7] Zhang X T, Hui L, Yan D X, et al. Defect rich structure activated 3D palladium catalyst for methanol oxidation reaction [J]. Angew. Chem.-Int. Edit., 2023, 62(40): e202308968
[8] Yan D F, Li Y X, Huo J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions [J]. Adv. Mater., 2017, 29(48): 1606459
[9] Cai L, He J F, Liu Q H, et al. Vacancy-induced ferromagnetism of MoS2 nanosheets [J]. J. Am. Chem. Soc., 2015, 137(7): 2622
[10] Ling T, Yan D Y, Jiao Y, et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis [J]. Nat. Commun., 2016, 7(1): 12876
[11] Gao S, Lin Y, Jiao X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel [J]. Nature, 2016, 529: 68
[12] Nosheen F, Wasfi N, Aslam S, et al. Ultrathin Pd-based nano-sheets: syntheses, properties and applications [J]. Nanoscale, 2020, 12(7): 4219
doi: 10.1039/c9nr09557h pmid: 32026907
[13] Yadav D D, Jha R, Singh S, et al. Synthesis and characterisation of Nickel oxide nanoparticles using CTAB as capping agent [J]. Mater. Today Proc., 2023, 73(2): 333
[14] Ma C S, Li G Z, Xu Y M, et al. Determination of the first and second CMCs of surfactants by adsorptive voltammetry [J]. Colloids Surf., 1998, 143A(1) : 89
[15] Shah S K, Chatterjee S K, Bhattarai A. Micellization of cationic surfactants in alcohol—water mixed solvent media [J]. J. Mol. Liq., 2016, 222: 906
[16] Lu H J, Chen C, Guo H T, et al. Determination of the second critical micelle concentration of CTAB by UV spectra without probe [J]. Acta Chim. Sin., 2006, 64: 2437
[16] 卢惠娟, 陈 冲, 郭宏涛 等. 无探针紫外光谱法测定CTAB的第二临界胶束浓度 [J]. 化学学报, 2006, 64: 2437
[17] Dong M, Hu H L, Ding S J, et al. Flexible non-enzymatic glucose biosensor based on CoNi2S4 nanosheets grown on nitrogen-doped carbon foam substrate [J]. J. Alloy. Compd., 2021, 883: 160830
[18] Wang Y H, Zhu Z Z, Xu K, et al. Palladium nanobelts with expanded lattice spacing for electrochemical oxygen reduction in alkaline media [J]. ACS Appl. Nano Mater., 2021, 4(2): 2118
[19] Foley D J, Coleman S P, Tschopp M A, et al. Correlating deformation mechanisms with X-ray diffraction phenomena in nanocrystalline metals using atomistic simulations [J]. Comput. Mater. Sci., 2018, 154: 178
[20] Srivastava S C, Newman L. Mixed ligand complexes of palladium (II) with chloride and bromide [J]. Inorg. Chem., 1966, 5(9): 1506
[21] Berhault G, Bausach M, Bisson L, et al. Seed-mediated synthesis of pd nanocrystals: factors influencing a kinetic- or thermodynamic-controlled growth regime [J]. J. Phys. Chem., 2007, 111C(16) : 5915
[22] Buettner J, Gutierrez M, Henglein A. Sonolysis of water-methanol mixtures [J]. J. Phys. Chem., 1991, 95(4): 1528
[23] Li Y, Gong S L, Che Y, et al. Hydroxyl radical scavenging activity and kinetics of Vitamin C [J]. Chin. J. Appl. Chem., 2015, 32(8): 948
doi: 10.11944/j.issn.1000-0518.2015.08.140427
[23] 李 艳, 巩士磊, 车 影 等. Fenton反应考察抗坏血酸清除羟基自由基能力及动力学[J]. 应用化学, 2015, 32(8): 948
[24] Allen R N, Shukla M K, Reed D, et al. Ab initio study of the structural properties of ascorbic acid (vitamin C) [J]. Int. J. Quantum Chem., 2006, 106(14): 2934
[25] Zi X H, Wang R, Liu L C, et al. Cetyltrimethylammonium bromide assisted preparation and characterization of Pd nanoparticles with spherical, worm-like, and network-like morphologies [J]. Chin. J. Catal., 2011, 32(5): 827
[25] 訾学红, 王 锐, 刘立成 等. 十六烷基三甲基溴化铵辅助作用下球形、蠕虫状和网状Pd纳米粒子的制备与表征 [J]. 催化学报, 2011, 32(5): 827
doi: 10.1016/S1872-2067(10)60194-5
[26] Lam B T X, Chiku M, Higuchi E, et al. Preparation of PdAg and PdAu nanoparticle-loaded carbon black catalysts and their electrocatalytic activity for the glycerol oxidation reaction in alkaline medium [J]. J. Power Sources, 2015, 297: 149
[27] Ao K L, Li D W, Yao Y X, et al. Electro-catalytic activity of composite films of Pd-doped bacterial cellulose Nano-fibers for ethanol oxidation[J]. Chin. J. Mater. Res., 2018, 32(2): 155
doi: 10.11901/1005.3093.2016.793
[27] 敖克龙, 李大伟, 姚壹鑫 等. 载钯细菌纤维素纳米纤维复合膜用于乙醇的电催化氧化[J]. 材料研究学报, 2018, 32(2): 155
doi: 10.11901/1005.3093.2016.793
[28] Fard L A, Ojani R, Raoof J B, et al. Poly (pyrrole-co-aniline) hollow nanosphere supported Pd nanoflowers as high-performance catalyst for methanol electrooxidation in alkaline media [J]. Energy, 2017, 127: 419
[29] Simões M, Baranton S, Coutanceau C. Electrooxidation of sodium borohydride at Pd, Au, and Pd x Au1- x carbon-supported nanocatalysts [J]. J. Phys. Chem., 2009, 113C(30) : 13369
[30] Ran X, Qu Q, Liu C, et al. Highly-effective palladium nanoclusters supported on para-sulfonated calix[8]arene-functionalized carbon nanohorns for ethylene glycol and glycerol oxidation reactions [J]. New J. Chem., 2018, 6: 4631
[31] Liu X J, Yin X, Sun Y D, et al. Interlaced Pd–Ag nanowires rich in grain boundary defects for boosting oxygen reduction electrocatalysis [J]. Nanoscale, 2022, 12(9): 5368
[32] Nguyen S T, Law H M, Nguyen H T, et al. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media [J]. Appl. Catal., 2009, 91B(1-2) : 507
[33] Feng Y Y, Liu Z H, Kong W Q, et al. Promotion of palladium catalysis by silver for ethanol electro-oxidation in alkaline electrolyte [J]. Int. J. Hydrog. Energy, 2014, 39(6): 2497
[34] Habibi E, Razmi H. Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media [J]. Int. J.Hydrog. Energy, 2012, 37(22): 16800
[35] Ivanov R, Nakova A, Tsakova V. Glycerol oxidation at Pd nanocatalysts obtained through spontaneous metal deposition on carbon substrates [J]. Electrochim. Acta, 2022, 427: 140871
[36] Mphahlele N E, Ipadeola A K, Haruna A B, et al. Microwave-induced defective PdFe/C nano-electrocatalyst for highly efficient alkaline glycerol oxidation reactions [J]. Electrochim. Acta, 2022, 409: 139977
[37] White J, Terekhina I, Dos Santos E C, et al. Synergistic bimetallic PdNi nanoparticles: enhancing glycerol electrooxidation while preserving C3 product selectivity [J]. ACS Appl. Energy Mater., 2024, 7(5): 1802
[38] Huang Y F, Wu P, Ma Y Y, et al. Single atom iron carbons supported Pd-Ni-P nanoalloy as a multifunctional electrocatalyst for alcohol oxidation [J]. Int. J. Hydrog. Energy, 2023, 48(37): 13972
[39] Mares-Briones F, Velázquez-Hernández I, González-Reyna M A, et al. AgPd nanoparticles as a potential electrocatalyst for enhanced performance in direct glycerol fuel cells [J]. Int. J. Hydrog. Energy, 2025, 108: 43
[40] Duan Y J, Liu Z L, Zhao B, et al. Raspberry-like Pd3Pb alloy nanoparticles: superior electrocatalytic activity for ethylene glycol and glycerol oxidation [J]. RSC Adv., 2020, 10(27): 15769
[1] 周影影, 张瑛嫺, 淡卓娅, 杜旭, 杜浩楠, 甄恩远, 罗发. 掺杂LaYFeO3 陶瓷吸波性能的影响[J]. 材料研究学报, 2025, 39(8): 561-568.
[2] 陆通, 王亚娜, 张超, 雷芃, 张鸿荣, 黄光伟, 郑立允. BN掺杂对热变形钕铁硼磁体性能的影响[J]. 材料研究学报, 2025, 39(8): 612-618.
[3] 耿瑞文, 杨志豇, 杨蔚华, 谢启明, 游津京, 李立军, 吴海华. 6H-SiC纳米磨削亚表面损伤机理的分子动力学研究[J]. 材料研究学报, 2025, 39(8): 603-611.
[4] 王铭宇, 李述军, 和正华, 唐明德, 张思倩, 张浩宇, 周舸, 陈立佳. 激光功率和扫描速度对SLM制备Ti5553合金性能的影响[J]. 材料研究学报, 2025, 39(8): 583-591.
[5] 张伟, 张兵, 周军, 刘跃, 王旭峰, 杨锋, 张海芹. 冷轧 Q 值对TA18管材塑性变形织构演变的影响[J]. 材料研究学报, 2025, 39(8): 619-631.
[6] 韩杨燚, 张腾昊, 张可, 赵时雨, 汪创伟, 余强, 李景辉, 孙新军. 终冷温度对Ti-V-Mo复合微合金钢析出相、组织和硬度的影响[J]. 材料研究学报, 2025, 39(7): 533-541.
[7] 刘晶, 李云杰, 秦煜, 李琳琳. GCr15轴承钢中渗碳体粒径的调控对其硬度的影响[J]. 材料研究学报, 2025, 39(7): 521-532.
[8] 刘志华, 王明月, 李易娟, 丘一帆, 李翔, 苏伟钊. 1T/2H O-MoS2@S-pCN催化剂的制备和性能[J]. 材料研究学报, 2025, 39(7): 551-560.
[9] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[10] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[11] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.
[12] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[13] 王恒霖, 丁汉林, 柴锋, 罗小兵, 王子健, 项重辰. 调质热处理对不同轧制温度的含Cu低合金高强钢力学性能的影响[J]. 材料研究学报, 2025, 39(6): 401-412.
[14] 袁新雨, 史非, 刘敬肖, 张皓杰, 杨大毅, 王美玉, 任明. Er2O3 对二硅酸锂玻璃陶瓷的结构和性能的影响[J]. 材料研究学报, 2025, 39(6): 455-462.
[15] 李海斌, 徐惠婷, 唐伟, 吕海波, 帅美荣. 热轧碳钢/不锈钢复合板结合界面电解腐蚀的毛细效应[J]. 材料研究学报, 2025, 39(5): 362-370.