|
|
富缺陷Pd纳米片的合成和对甘油的电催化氧化性能 |
谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽( ) |
岭南师范学院化学化工学院 湛江 524048 |
|
Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol |
TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli( ) |
School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China |
引用本文:
谭德新, 陈诗慧, 罗小丽, 宁小媚, 王艳丽. 富缺陷Pd纳米片的合成和对甘油的电催化氧化性能[J]. 材料研究学报, 2025, 39(8): 632-640.
Dexin TAN,
Shihui CHEN,
Xiaoli LUO,
Xiaomei NING,
Yanli WANG.
Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. Chinese Journal of Materials Research, 2025, 39(8): 632-640.
[1] |
Braun M, Santana C S, Garcia A C, et al. From waste to value-glycerol electrooxidation for energy conversion and chemical production [J]. Curr. Opin. Green Sustainable Chem., 2023, 41: 100829
|
[2] |
Velázquez-Hernández I, Álvarez-López A, Álvarez-Contreras L, et al. Electrocatalytic oxidation of crude glycerol from the biodiesel production on Pd-M (M = Ir, Ru or Pt) sub-10 nm nanomaterials [J]. Appl. Surf. Sci., 2021, 545(15): 149055
|
[3] |
Arjona N, Rivas S, Álvarez-Contreras L, et al. Glycerol electro-oxidation in alkaline media using Pt and Pd catalysts electrodeposited on three-dimensional porous carbon electrodes [J]. New J. Chem., 2017, 41(4): 1854
|
[4] |
Saravani H, Farsadrooh M, Mollashahi M S, et al. Two-dimensional engineering of Pd nanosheets as advanced electrocatalysts toward formic acid oxidation [J]. Int. J. Hydrog. Energy, 2020, 45(41): 21232
|
[5] |
Liu J F, Liu H T, Wang Q X, et al. Phosphorus doped PdMo bimetallene as a superior bifunctional fuel cell electrocatalyst [J]. Chem. Eng. J., 2024, 486(15): 150258
|
[6] |
Wang J, Zhang W, Dong Z M, et al. One-step CO assisted synthesis of hierarchical porous PdRuCu nanosheets as advanced bifunctional catalysts for hydrogen evolution and glycerol oxidation [J]. Int. J. Hydrog. Energy, 2022, 47(78): 33319
|
[7] |
Zhang X T, Hui L, Yan D X, et al. Defect rich structure activated 3D palladium catalyst for methanol oxidation reaction [J]. Angew. Chem.-Int. Edit., 2023, 62(40): e202308968
|
[8] |
Yan D F, Li Y X, Huo J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions [J]. Adv. Mater., 2017, 29(48): 1606459
|
[9] |
Cai L, He J F, Liu Q H, et al. Vacancy-induced ferromagnetism of MoS2 nanosheets [J]. J. Am. Chem. Soc., 2015, 137(7): 2622
|
[10] |
Ling T, Yan D Y, Jiao Y, et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis [J]. Nat. Commun., 2016, 7(1): 12876
|
[11] |
Gao S, Lin Y, Jiao X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel [J]. Nature, 2016, 529: 68
|
[12] |
Nosheen F, Wasfi N, Aslam S, et al. Ultrathin Pd-based nano-sheets: syntheses, properties and applications [J]. Nanoscale, 2020, 12(7): 4219
doi: 10.1039/c9nr09557h
pmid: 32026907
|
[13] |
Yadav D D, Jha R, Singh S, et al. Synthesis and characterisation of Nickel oxide nanoparticles using CTAB as capping agent [J]. Mater. Today Proc., 2023, 73(2): 333
|
[14] |
Ma C S, Li G Z, Xu Y M, et al. Determination of the first and second CMCs of surfactants by adsorptive voltammetry [J]. Colloids Surf., 1998, 143A(1) : 89
|
[15] |
Shah S K, Chatterjee S K, Bhattarai A. Micellization of cationic surfactants in alcohol—water mixed solvent media [J]. J. Mol. Liq., 2016, 222: 906
|
[16] |
Lu H J, Chen C, Guo H T, et al. Determination of the second critical micelle concentration of CTAB by UV spectra without probe [J]. Acta Chim. Sin., 2006, 64: 2437
|
[16] |
卢惠娟, 陈 冲, 郭宏涛 等. 无探针紫外光谱法测定CTAB的第二临界胶束浓度 [J]. 化学学报, 2006, 64: 2437
|
[17] |
Dong M, Hu H L, Ding S J, et al. Flexible non-enzymatic glucose biosensor based on CoNi2S4 nanosheets grown on nitrogen-doped carbon foam substrate [J]. J. Alloy. Compd., 2021, 883: 160830
|
[18] |
Wang Y H, Zhu Z Z, Xu K, et al. Palladium nanobelts with expanded lattice spacing for electrochemical oxygen reduction in alkaline media [J]. ACS Appl. Nano Mater., 2021, 4(2): 2118
|
[19] |
Foley D J, Coleman S P, Tschopp M A, et al. Correlating deformation mechanisms with X-ray diffraction phenomena in nanocrystalline metals using atomistic simulations [J]. Comput. Mater. Sci., 2018, 154: 178
|
[20] |
Srivastava S C, Newman L. Mixed ligand complexes of palladium (II) with chloride and bromide [J]. Inorg. Chem., 1966, 5(9): 1506
|
[21] |
Berhault G, Bausach M, Bisson L, et al. Seed-mediated synthesis of pd nanocrystals: factors influencing a kinetic- or thermodynamic-controlled growth regime [J]. J. Phys. Chem., 2007, 111C(16) : 5915
|
[22] |
Buettner J, Gutierrez M, Henglein A. Sonolysis of water-methanol mixtures [J]. J. Phys. Chem., 1991, 95(4): 1528
|
[23] |
Li Y, Gong S L, Che Y, et al. Hydroxyl radical scavenging activity and kinetics of Vitamin C [J]. Chin. J. Appl. Chem., 2015, 32(8): 948
doi: 10.11944/j.issn.1000-0518.2015.08.140427
|
[23] |
李 艳, 巩士磊, 车 影 等. Fenton反应考察抗坏血酸清除羟基自由基能力及动力学[J]. 应用化学, 2015, 32(8): 948
|
[24] |
Allen R N, Shukla M K, Reed D, et al. Ab initio study of the structural properties of ascorbic acid (vitamin C) [J]. Int. J. Quantum Chem., 2006, 106(14): 2934
|
[25] |
Zi X H, Wang R, Liu L C, et al. Cetyltrimethylammonium bromide assisted preparation and characterization of Pd nanoparticles with spherical, worm-like, and network-like morphologies [J]. Chin. J. Catal., 2011, 32(5): 827
|
[25] |
訾学红, 王 锐, 刘立成 等. 十六烷基三甲基溴化铵辅助作用下球形、蠕虫状和网状Pd纳米粒子的制备与表征 [J]. 催化学报, 2011, 32(5): 827
doi: 10.1016/S1872-2067(10)60194-5
|
[26] |
Lam B T X, Chiku M, Higuchi E, et al. Preparation of PdAg and PdAu nanoparticle-loaded carbon black catalysts and their electrocatalytic activity for the glycerol oxidation reaction in alkaline medium [J]. J. Power Sources, 2015, 297: 149
|
[27] |
Ao K L, Li D W, Yao Y X, et al. Electro-catalytic activity of composite films of Pd-doped bacterial cellulose Nano-fibers for ethanol oxidation[J]. Chin. J. Mater. Res., 2018, 32(2): 155
doi: 10.11901/1005.3093.2016.793
|
[27] |
敖克龙, 李大伟, 姚壹鑫 等. 载钯细菌纤维素纳米纤维复合膜用于乙醇的电催化氧化[J]. 材料研究学报, 2018, 32(2): 155
doi: 10.11901/1005.3093.2016.793
|
[28] |
Fard L A, Ojani R, Raoof J B, et al. Poly (pyrrole-co-aniline) hollow nanosphere supported Pd nanoflowers as high-performance catalyst for methanol electrooxidation in alkaline media [J]. Energy, 2017, 127: 419
|
[29] |
Simões M, Baranton S, Coutanceau C. Electrooxidation of sodium borohydride at Pd, Au, and Pd x Au1- x carbon-supported nanocatalysts [J]. J. Phys. Chem., 2009, 113C(30) : 13369
|
[30] |
Ran X, Qu Q, Liu C, et al. Highly-effective palladium nanoclusters supported on para-sulfonated calix[8]arene-functionalized carbon nanohorns for ethylene glycol and glycerol oxidation reactions [J]. New J. Chem., 2018, 6: 4631
|
[31] |
Liu X J, Yin X, Sun Y D, et al. Interlaced Pd–Ag nanowires rich in grain boundary defects for boosting oxygen reduction electrocatalysis [J]. Nanoscale, 2022, 12(9): 5368
|
[32] |
Nguyen S T, Law H M, Nguyen H T, et al. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media [J]. Appl. Catal., 2009, 91B(1-2) : 507
|
[33] |
Feng Y Y, Liu Z H, Kong W Q, et al. Promotion of palladium catalysis by silver for ethanol electro-oxidation in alkaline electrolyte [J]. Int. J. Hydrog. Energy, 2014, 39(6): 2497
|
[34] |
Habibi E, Razmi H. Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media [J]. Int. J.Hydrog. Energy, 2012, 37(22): 16800
|
[35] |
Ivanov R, Nakova A, Tsakova V. Glycerol oxidation at Pd nanocatalysts obtained through spontaneous metal deposition on carbon substrates [J]. Electrochim. Acta, 2022, 427: 140871
|
[36] |
Mphahlele N E, Ipadeola A K, Haruna A B, et al. Microwave-induced defective PdFe/C nano-electrocatalyst for highly efficient alkaline glycerol oxidation reactions [J]. Electrochim. Acta, 2022, 409: 139977
|
[37] |
White J, Terekhina I, Dos Santos E C, et al. Synergistic bimetallic PdNi nanoparticles: enhancing glycerol electrooxidation while preserving C3 product selectivity [J]. ACS Appl. Energy Mater., 2024, 7(5): 1802
|
[38] |
Huang Y F, Wu P, Ma Y Y, et al. Single atom iron carbons supported Pd-Ni-P nanoalloy as a multifunctional electrocatalyst for alcohol oxidation [J]. Int. J. Hydrog. Energy, 2023, 48(37): 13972
|
[39] |
Mares-Briones F, Velázquez-Hernández I, González-Reyna M A, et al. AgPd nanoparticles as a potential electrocatalyst for enhanced performance in direct glycerol fuel cells [J]. Int. J. Hydrog. Energy, 2025, 108: 43
|
[40] |
Duan Y J, Liu Z L, Zhao B, et al. Raspberry-like Pd3Pb alloy nanoparticles: superior electrocatalytic activity for ethylene glycol and glycerol oxidation [J]. RSC Adv., 2020, 10(27): 15769
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|