|
|
非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能 |
邓小龙1, 王山山1, 戴鑫鑫1, 刘义1( ), 黄金昭2( ) |
1 安徽工业大学微电子与数据科学学院 马鞍山 243032 2 济南大学物理科学与技术学院 济南 250022 |
|
Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution |
DENG Xiaolong1, WANG Shanshan1, DAI Xinxin1, LIU Yi1( ), HUANG Jinzhao2( ) |
1 School of Microelectronics and Data Science, Anhui University of Technology, Ma'anshan 243032, China 2 School of Physics and Technology, University of Jinan, Jinan 250022, China |
引用本文:
邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
Xiaolong DENG,
Shanshan WANG,
Xinxin DAI,
Yi LIU,
Jinzhao HUANG.
Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution[J]. Chinese Journal of Materials Research, 2025, 39(1): 71-80.
1 |
Deng X L, Huang J Z, Chen F S, et al. In situ growth of metallic Ag0 intercalated CoAl layered double hydroxides as efficient electrocatalysts for the oxygen reduction reaction in alkaline solutions [J]. Dalton Trans., 2019, 48: 1084
|
2 |
Gong Y X, Yao J S, Wang P, et al. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting [J]. Chin. J. Chem. Eng., 2022, 43: 282
|
3 |
Yin S, Tu W, Sheng Y, et al. A highly efficient oxygen evolution catalyst consisting of interconnected nickel-iron‐layered double hydroxide and carbon nanodomains [J]. Adv. Mater., 2018, 30: 1705106
|
4 |
Zhang Z L, Wang S Q, Xu B L, et al. Electrocatalytic oxygen evolution performance of high entropy FeCoNiMoCr alloy thin film electrode [J]. Chin. J. Mater. Res., 2021, 35 (3): 193
doi: 10.11901/1005.3093.2020.233
|
4 |
张泽灵, 王世琦, 徐邦利 等. FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能 [J]. 材料研究学报, 2021, 35(3): 193
doi: 10.11901/1005.3093.2020.233
|
5 |
Li Z, Zhou Y, Xie M, et al. High-density cationic defects coupling with local alkaline-enriched environment for efficient and stable water oxidation [J]. Angew. Chem. Int. Ed., 2023, 62: e202217815
|
6 |
Zhang Y, Ma C Q, Zhu X J, et al. Hetero-interface manipulation in MoO x @Ru to evoke industrial hydrogen production performance with current density of 4000 mA·cm-2 [J]. Adv. Energy Mater., 2023, 13: 2301492
|
7 |
Liu Y F, Ye C C, Zhao S N, et al. A dual-site doping strategy for developing efficient perovskite oxide electrocatalysts towards oxygen evolution reaction [J]. Nano Energy, 2022, 99: 107344
|
8 |
Feng L, Li A, Li Y, et al. A highly active CoFe layered double hydroxide for water splitting [J]. ChemPlusChem, 2017, 82: 483
doi: 10.1002/cplu.201700005
pmid: 31962033
|
9 |
Tang C, Cheng N, Pu Z, et al. NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting [J]. Angew. Chem., 2015, 127: 9483
|
10 |
Li H L, Mu J, Wang Y Y, et al. Preparation and electrocatalytic oxygen evolution performance of a novel porous MnNiCoCrFe high-entropy alloy as electrocatalytic electrode material [J]. Chin. J. Mater. Res., 2023, 37(5): 332
doi: 10.11901/1005.3093.2022.135
|
10 |
李海龙, 牟 娟, 王媛媛 等. MnNiCoCrFe多孔高熵合金的电催化析氧性能 [J]. 材料研究学报, 2023, 37(5): 332
doi: 10.11901/1005.3093.2022.135
|
11 |
Zheng J N, Lv J J, Li S S, et al. One-pot synthesis of reduced graphene oxide supported hollow Ag@ Pt core-shell nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation [J]. J. Mater. Chem. A, 2014, 2: 3445
|
12 |
Liu Y F, Ye C C, Chen L, et al. High entropy-driven role of oxygen vacancies for water oxidation [J]. Adv. Funct. Mater., 2024, 2314820
|
13 |
Yuan F F, Zhang E L, Liu Z H, et al. Hollow CoS x nanoparticles grown on FeCo-LDH microtubes for enhanced electrocatalytic performances for the oxygen evolution reaction [J]. ACS Appl. Energy Mater., 2021, 4: 12211
|
14 |
Qian L, Lu Z, Xu T, et al. Trinary layered double hydroxides as high‐performance bifunctional materials for oxygen electrocatalysis [J]. Adv. Energy Mater., 2015, 5: 1500245
|
15 |
Ji J P, Li G H, Geng F X, Mn-doped Co-Al LDHs and its potential use for overall water splitting [J]. Chin. J. Mater. Res., 2022, 36(2): 140
doi: 10.11901/1005.3093.2021.258
|
15 |
嵇锦鹏, 李国辉, 耿凤霞. Mn掺杂Co-Al 金属氢氧化物的制备及其全解水电化学性能 [J]. 材料研究学报, 2022, 36(2): 140
doi: 10.11901/1005.3093.2021.258
|
16 |
Tan L, Yu J, Wang C, et al. Partial sulfidation strategy to NiFe-LDH@FeNi2S4 heterostructure enable high-performance water/seawater oxidation [J]. Adv. Funct. Mater., 2022, 32: 2200951
|
17 |
Lei H, Wan Q X, Tan S Z, et al. Pt-quantum-dot-modified sulfur-doped NiFe layered double hydroxide for high-current-density alkaline water splitting at industrial temperature [J]. Adv. Mater., 2023, 35: 2208209
|
18 |
Jeghan S M N, Kim D, Lee Y, et al. Designing a smart heterojunction coupling of cobalt-iron layered double hydroxide on nickel selenide nanosheets for highly efficient overall water splitting kinetics [J]. Appl. Catal. B- Environ., 2022, 308: 121221
|
19 |
Fan R, Mu Q, Wei Z, et al. Atomic Ir-doped NiCo layered double hydroxide as a bifunctional electrocatalyst for highly efficient and durable water splitting [J]. J. Mater. Chem. A, 2020, 8: 9871
|
20 |
Chi J, Yu H, Qin B, et al. Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction [J]. ACS Appl. Mater. Interfaces, 2017, 9: 464
|
21 |
Zhang L, Yuan X, Jin Y, et al. Simple construction of NiCo-LDH@FeOOH nanoflower heterostructure by chemical etching strategy for efficient oxygen evolution reaction [J]. J. Alloy. Comp., 2023, 960: 170941
|
22 |
Bao W, Xiao L, Zhang J, et al. Interface engineering of NiV-LDH@FeOOH heterostructures as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions [J]. Chem. Commun., 2020, 56: 9360
|
23 |
Jiang K, Liu W, Lai W, et al. NiFe layered double hydroxide/FeOOH heterostructure nanosheets as an efficient and durable bifunctional electrocatalyst for overall seawater splitting [J]. Inorg. Chem., 2021, 60: 17371
|
24 |
Luo H, Liang J, Zhou J, et al. Synergistic coupling of FeOOH with Mo-incorporated NiCo LDH towards enhancing the oxygen evolution reaction [J]. New J. Chem., 2022, 46: 7999
|
25 |
Tsuji E, Imanishi A, Fukui K, et al. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution [J]. Electrochim. Acta, 2011, 56: 2009
|
26 |
Smith R D, Prévot M S, Fagan R D, et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis [J]. Science, 2013, 340: 60
doi: 10.1126/science.1233638
pmid: 23539180
|
27 |
Indra A, Menezes P W, Sahraie N R, et al. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides [J]. J. Am. Chem. Soc., 2014, 136: 17530
doi: 10.1021/ja509348t
pmid: 25469760
|
28 |
Liu R, Wang Y, Liu D, et al. Water‐plasma‐enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation [J]. Adv. Mater., 2017, 29: 1701546
|
29 |
Yang H, Liu Y, Luo S, et al. Lateral-size-mediated efficient oxygen evolution reaction: insights into the atomically thin quantum dot structure of NiFe2O4 [J]. ACS Catal., 2017, 7: 5557
|
30 |
Deng X L, Li H J, Liu Y, et al. Amorphous FeOOH decorated hierarchy capillary-liked CoAl LDH catalysts for efficient oxygen evolution reaction [J]. Int. J. Hydrogen Energy, 2021, 46: 21289
|
31 |
Wang S S, Liu Y, Deng X L, et al. Co3S4/Fe3S4 heterostructured bifunctional catalyst evolved from CoFe LDH for effective overall water splitting in alkaline solution [J]. J. Alloy. Comp., 2022, 925: 166787
|
32 |
Gong M, Wang D Y, Chen C C, et al. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction [J]. Nano Res., 2016, 9: 28
|
33 |
Lee S, Govindan M, Kim D. CoFe-based layered double hydroxide for high removal capacity of hydrogen sulfide under high humid gas stream [J]. Chem. Eng. J., 2021, 416: 127918
|
34 |
Yang J, Li C, Liang D, et al. Central-collapsed structure of CoFeAl layered double hydroxides and its photocatalytic performance [J]. J. Colloid. Interface. Sci., 2021, 590: 571
|
35 |
Quan B, Liang X, Ji G, et al. Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach [J]. Carbon, 2018, 129: 310
|
36 |
You C, Ji Y, Liu Z, et al. Ultrathin CoFe-borate layer coated CoFe-layered double hydroxide nanosheets array: a non-noble-metal 3D catalyst electrode for efficient and durable water oxidation in potassium borate [J]. ACS Sustainable Chem. Eng., 2018, 6: 1527
|
37 |
Lu X, Zhao C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities [J]. Nat. Commun., 2015, 6: 1
|
38 |
Huang Z F, Song J, Du Y, et al. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts [J]. Nat. Energy, 2019, 4: 329
|
39 |
Ma L, Zhou H, Xu M, et al. Integrating hydrogen production with anodic selective oxidation of sulfides over a CoFe layered double hydroxide electrode [J]. Chem. Sci., 2021, 12: 938
|
40 |
Wang T, Zhang Y, Wang Y, et al. Alumina-supported CoPS nanostructures derived from LDH as highly active bifunctional catalysts for overall water splitting [J]. ACS Sustainable Chem. Eng., 2018, 6: 10087
|
41 |
Sun F, Li C, Li B, et al. Amorphous MoSx developed on Co(OH)2 nanosheets generating efficient oxygen evolution catalysts [J]. J. Mater. Chem. A, 2017, 5: 23103
|
42 |
Ping J, Wang Y, Lu Q, et al. Self‐assembly of single‐layer CoAl‐layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction [J]. Adv. Mater., 2016, 28: 7640
|
43 |
Sang Y, Cao X, Dai G, et al. Facile one-pot synthesis of novel hierarchical Bi2O3/Bi2S3 nanoflower photocatalyst with intrinsic pn junction for efficient photocatalytic removals of RhB and Cr (VI) [J]. J. Hazard. Mater., 2020, 381: 120942
|
44 |
Duan R, Li Y, Gong S, et al. Hierarchical CoFe oxyhydroxides nanosheets and Co2P nanoparticles grown on Ni foam for overall water splitting [J]. Electrochim. Acta, 2020, 360: 136994
|
45 |
Liu J, Zheng M, Shi X, et al. Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors [J]. Adv. Funct. Mater., 2016, 26: 919
|
46 |
Chemelewski W D, Lee H C, Lin J F, et al. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting [J]. J. Am. Chem. Soc., 2014, 136: 2843
doi: 10.1021/ja411835a
pmid: 24475949
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|