Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (1): 71-80    DOI: 10.11901/1005.3093.2024.154
  研究论文 本期目录 | 过刊浏览 |
非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能
邓小龙1, 王山山1, 戴鑫鑫1, 刘义1(), 黄金昭2()
1 安徽工业大学微电子与数据科学学院 马鞍山 243032
2 济南大学物理科学与技术学院 济南 250022
Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution
DENG Xiaolong1, WANG Shanshan1, DAI Xinxin1, LIU Yi1(), HUANG Jinzhao2()
1 School of Microelectronics and Data Science, Anhui University of Technology, Ma'anshan 243032, China
2 School of Physics and Technology, University of Jinan, Jinan 250022, China
引用本文:

邓小龙, 王山山, 戴鑫鑫, 刘义, 黄金昭. 非晶态FeOOH修饰的CoFeAl层状双氢氧化物异质结构的制备和对碱性溶液的全解水性能[J]. 材料研究学报, 2025, 39(1): 71-80.
Xiaolong DENG, Shanshan WANG, Xinxin DAI, Yi LIU, Jinzhao HUANG. Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution[J]. Chinese Journal of Materials Research, 2025, 39(1): 71-80.

全文: PDF(18797 KB)   HTML
摘要: 

用两步法制备分层互联多孔的非晶态FeOOH修饰CoFeAl层状双氢氧化物(CoFeAl LDH)异质结构并用作碱性电解水的催化剂,研究这种催化剂的全解水性能。结果表明,在1 mol/L的KOH溶液中电流密度为100 mA·cm-2的条件下,CoFeAl-FeOOH-6析氧(OER)和析氢(HER)的过电位分别为298 mV和193 mV,且其塔菲尔斜率都很小(OER为50.0 mV·dec-1,HER为95.6 mV·dec-1)。CoFeAl-FeOOH-6作为双电极电解水的阳极和阴极,在电流密度达到10 mA·cm-2时全解水的电势为1.60 V且其稳定性较高。FeOOH修饰CoFeAl LDH使其电催化性能提高的原因,是分层互联的纳米片结构、多孔的异质结构以及相互间的协同效应。

关键词 无机非金属材料电催化剂非晶态FeOOH修饰析氧析氢    
Abstract

The development of a low-cost and highly efficient electrocatalyst for replacing the noble metal-based materials and enhancing the efficiency of electrocatalytic generation of hydrogen is still a challenge. In this work, an amorphous FeOOH decorated CoFeAl LDH catalyst with hierarchically interconnected porous heterostructure was synthesized by a two-step method. Then, the performance of overall water splitting in alkaline solution of the prepared electrocatalyst was assessed.. Results show that by an applied current density of 100 mA·cm-2 for the catalyst CoFeAl-FeOOH-6, the generation of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in 1 mol/L KOH solution requires only relatively low overpotentials of 298 and 193 mV, respectively. And their corresponding Tafel slopes are relatively small (i.e. 50.0 and 95.6 mV·dec-1 for OER and HER respectively). Furthermore, the catalyst CoFeAl-FeOOH-6 as both anode and cathode in a two-electrode water splitting device can achieve excellent stability by a current density of 10 mA·cm-2 at a cell voltage of 1.60 V. The systematical electrochemical measurement and characterization demonstrated that the enhanced electrocatalytic property of FeOOH decorated CoFeAl LDH electrode could be ascribed to the hierarchical interconnected nanosheet structure, the porous heterostructure, and the synergistic effect between them. This work could provide a promising route for promoting the electrocatalytic performance of LDH-based catalyst with a simple amorphization method, which may be expanded to other LDH materials for enhancing their electrocatalytic activities.

Key wordsinorganic non-metallic materials    electrocatalyst    amorphous FeOOH decoration    hydrogen evolution    oxygen evolution
收稿日期: 2024-04-02     
ZTFLH:  TQ116.2  
基金资助:安徽省高校科学研究项目(KJ2021A0387);安徽省高校科学研究项目(KJ2019A0050);山东省高等学校青创人才引育计划(鲁教人字[2019]9号);山东省自然科学基金面上项目(ZR2020ME052)
通讯作者: 刘义,副教授,yliu6@ahut.edu.cn,研究方向为电化学能源存储与转化;
黄金昭,教授,ss_huangjinzhao@ujn.edu.cn,研究方向为功能化合金材料的制备及电催化应用
Corresponding author: LIU Yi, Tel: 15955525372, E-mail: yliu6@ahut.edu.cn;
HUANG Jinzhao, Tel: 15098785616, E-mail: ss_huangjinzhao@ujn.edu.cn
作者简介: 邓小龙,男,1984年生,副教授
图1  CoFeAl-FeOOH-x (x = 1, 3, 6, 9, 12)和CoFeAl LDH的XRD谱以及CoFeAl-FeOOH-6和CoFeAl LDH XRD谱的放大
图2  样品的SEM照片和对应的EDX元素分布
图3  样品的TEM、HRTEM和对应的EDX元素分布
图4  样品的XPS光谱分析
图5  样品的OER性能
图6  CoFeAl-FeOOH-6稳定性测试前后的XRD谱(a),SEM照片(b~c),(d)对应的元素扫描和高分辨XPS能谱,Co 2p (e),Fe 2p (f),Al 2p (g)和O 1s (h)的XPS高分辨能谱
图7  样品的HER性能
图8  CoFeAl-FeOOH-6和CoFeAl LDH的催化性能
1 Deng X L, Huang J Z, Chen F S, et al. In situ growth of metallic Ag0 intercalated CoAl layered double hydroxides as efficient electrocatalysts for the oxygen reduction reaction in alkaline solutions [J]. Dalton Trans., 2019, 48: 1084
2 Gong Y X, Yao J S, Wang P, et al. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting [J]. Chin. J. Chem. Eng., 2022, 43: 282
3 Yin S, Tu W, Sheng Y, et al. A highly efficient oxygen evolution catalyst consisting of interconnected nickel-iron‐layered double hydroxide and carbon nanodomains [J]. Adv. Mater., 2018, 30: 1705106
4 Zhang Z L, Wang S Q, Xu B L, et al. Electrocatalytic oxygen evolution performance of high entropy FeCoNiMoCr alloy thin film electrode [J]. Chin. J. Mater. Res., 2021, 35 (3): 193
doi: 10.11901/1005.3093.2020.233
4 张泽灵, 王世琦, 徐邦利 等. FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能 [J]. 材料研究学报, 2021, 35(3): 193
doi: 10.11901/1005.3093.2020.233
5 Li Z, Zhou Y, Xie M, et al. High-density cationic defects coupling with local alkaline-enriched environment for efficient and stable water oxidation [J]. Angew. Chem. Int. Ed., 2023, 62: e202217815
6 Zhang Y, Ma C Q, Zhu X J, et al. Hetero-interface manipulation in MoO x @Ru to evoke industrial hydrogen production performance with current density of 4000 mA·cm-2 [J]. Adv. Energy Mater., 2023, 13: 2301492
7 Liu Y F, Ye C C, Zhao S N, et al. A dual-site doping strategy for developing efficient perovskite oxide electrocatalysts towards oxygen evolution reaction [J]. Nano Energy, 2022, 99: 107344
8 Feng L, Li A, Li Y, et al. A highly active CoFe layered double hydroxide for water splitting [J]. ChemPlusChem, 2017, 82: 483
doi: 10.1002/cplu.201700005 pmid: 31962033
9 Tang C, Cheng N, Pu Z, et al. NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting [J]. Angew. Chem., 2015, 127: 9483
10 Li H L, Mu J, Wang Y Y, et al. Preparation and electrocatalytic oxygen evolution performance of a novel porous MnNiCoCrFe high-entropy alloy as electrocatalytic electrode material [J]. Chin. J. Mater. Res., 2023, 37(5): 332
doi: 10.11901/1005.3093.2022.135
10 李海龙, 牟 娟, 王媛媛 等. MnNiCoCrFe多孔高熵合金的电催化析氧性能 [J]. 材料研究学报, 2023, 37(5): 332
doi: 10.11901/1005.3093.2022.135
11 Zheng J N, Lv J J, Li S S, et al. One-pot synthesis of reduced graphene oxide supported hollow Ag@ Pt core-shell nanospheres with enhanced electrocatalytic activity for ethylene glycol oxidation [J]. J. Mater. Chem. A, 2014, 2: 3445
12 Liu Y F, Ye C C, Chen L, et al. High entropy-driven role of oxygen vacancies for water oxidation [J]. Adv. Funct. Mater., 2024, 2314820
13 Yuan F F, Zhang E L, Liu Z H, et al. Hollow CoS x nanoparticles grown on FeCo-LDH microtubes for enhanced electrocatalytic performances for the oxygen evolution reaction [J]. ACS Appl. Energy Mater., 2021, 4: 12211
14 Qian L, Lu Z, Xu T, et al. Trinary layered double hydroxides as high‐performance bifunctional materials for oxygen electrocatalysis [J]. Adv. Energy Mater., 2015, 5: 1500245
15 Ji J P, Li G H, Geng F X, Mn-doped Co-Al LDHs and its potential use for overall water splitting [J]. Chin. J. Mater. Res., 2022, 36(2): 140
doi: 10.11901/1005.3093.2021.258
15 嵇锦鹏, 李国辉, 耿凤霞. Mn掺杂Co-Al 金属氢氧化物的制备及其全解水电化学性能 [J]. 材料研究学报, 2022, 36(2): 140
doi: 10.11901/1005.3093.2021.258
16 Tan L, Yu J, Wang C, et al. Partial sulfidation strategy to NiFe-LDH@FeNi2S4 heterostructure enable high-performance water/seawater oxidation [J]. Adv. Funct. Mater., 2022, 32: 2200951
17 Lei H, Wan Q X, Tan S Z, et al. Pt-quantum-dot-modified sulfur-doped NiFe layered double hydroxide for high-current-density alkaline water splitting at industrial temperature [J]. Adv. Mater., 2023, 35: 2208209
18 Jeghan S M N, Kim D, Lee Y, et al. Designing a smart heterojunction coupling of cobalt-iron layered double hydroxide on nickel selenide nanosheets for highly efficient overall water splitting kinetics [J]. Appl. Catal. B- Environ., 2022, 308: 121221
19 Fan R, Mu Q, Wei Z, et al. Atomic Ir-doped NiCo layered double hydroxide as a bifunctional electrocatalyst for highly efficient and durable water splitting [J]. J. Mater. Chem. A, 2020, 8: 9871
20 Chi J, Yu H, Qin B, et al. Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction [J]. ACS Appl. Mater. Interfaces, 2017, 9: 464
21 Zhang L, Yuan X, Jin Y, et al. Simple construction of NiCo-LDH@FeOOH nanoflower heterostructure by chemical etching strategy for efficient oxygen evolution reaction [J]. J. Alloy. Comp., 2023, 960: 170941
22 Bao W, Xiao L, Zhang J, et al. Interface engineering of NiV-LDH@FeOOH heterostructures as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions [J]. Chem. Commun., 2020, 56: 9360
23 Jiang K, Liu W, Lai W, et al. NiFe layered double hydroxide/FeOOH heterostructure nanosheets as an efficient and durable bifunctional electrocatalyst for overall seawater splitting [J]. Inorg. Chem., 2021, 60: 17371
24 Luo H, Liang J, Zhou J, et al. Synergistic coupling of FeOOH with Mo-incorporated NiCo LDH towards enhancing the oxygen evolution reaction [J]. New J. Chem., 2022, 46: 7999
25 Tsuji E, Imanishi A, Fukui K, et al. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution [J]. Electrochim. Acta, 2011, 56: 2009
26 Smith R D, Prévot M S, Fagan R D, et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis [J]. Science, 2013, 340: 60
doi: 10.1126/science.1233638 pmid: 23539180
27 Indra A, Menezes P W, Sahraie N R, et al. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides [J]. J. Am. Chem. Soc., 2014, 136: 17530
doi: 10.1021/ja509348t pmid: 25469760
28 Liu R, Wang Y, Liu D, et al. Water‐plasma‐enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation [J]. Adv. Mater., 2017, 29: 1701546
29 Yang H, Liu Y, Luo S, et al. Lateral-size-mediated efficient oxygen evolution reaction: insights into the atomically thin quantum dot structure of NiFe2O4 [J]. ACS Catal., 2017, 7: 5557
30 Deng X L, Li H J, Liu Y, et al. Amorphous FeOOH decorated hierarchy capillary-liked CoAl LDH catalysts for efficient oxygen evolution reaction [J]. Int. J. Hydrogen Energy, 2021, 46: 21289
31 Wang S S, Liu Y, Deng X L, et al. Co3S4/Fe3S4 heterostructured bifunctional catalyst evolved from CoFe LDH for effective overall water splitting in alkaline solution [J]. J. Alloy. Comp., 2022, 925: 166787
32 Gong M, Wang D Y, Chen C C, et al. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction [J]. Nano Res., 2016, 9: 28
33 Lee S, Govindan M, Kim D. CoFe-based layered double hydroxide for high removal capacity of hydrogen sulfide under high humid gas stream [J]. Chem. Eng. J., 2021, 416: 127918
34 Yang J, Li C, Liang D, et al. Central-collapsed structure of CoFeAl layered double hydroxides and its photocatalytic performance [J]. J. Colloid. Interface. Sci., 2021, 590: 571
35 Quan B, Liang X, Ji G, et al. Laminated graphene oxide-supported high-efficiency microwave absorber fabricated by an in situ growth approach [J]. Carbon, 2018, 129: 310
36 You C, Ji Y, Liu Z, et al. Ultrathin CoFe-borate layer coated CoFe-layered double hydroxide nanosheets array: a non-noble-metal 3D catalyst electrode for efficient and durable water oxidation in potassium borate [J]. ACS Sustainable Chem. Eng., 2018, 6: 1527
37 Lu X, Zhao C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities [J]. Nat. Commun., 2015, 6: 1
38 Huang Z F, Song J, Du Y, et al. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts [J]. Nat. Energy, 2019, 4: 329
39 Ma L, Zhou H, Xu M, et al. Integrating hydrogen production with anodic selective oxidation of sulfides over a CoFe layered double hydroxide electrode [J]. Chem. Sci., 2021, 12: 938
40 Wang T, Zhang Y, Wang Y, et al. Alumina-supported CoPS nanostructures derived from LDH as highly active bifunctional catalysts for overall water splitting [J]. ACS Sustainable Chem. Eng., 2018, 6: 10087
41 Sun F, Li C, Li B, et al. Amorphous MoSx developed on Co(OH)2 nanosheets generating efficient oxygen evolution catalysts [J]. J. Mater. Chem. A, 2017, 5: 23103
42 Ping J, Wang Y, Lu Q, et al. Self‐assembly of single‐layer CoAl‐layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction [J]. Adv. Mater., 2016, 28: 7640
43 Sang Y, Cao X, Dai G, et al. Facile one-pot synthesis of novel hierarchical Bi2O3/Bi2S3 nanoflower photocatalyst with intrinsic pn junction for efficient photocatalytic removals of RhB and Cr (VI) [J]. J. Hazard. Mater., 2020, 381: 120942
44 Duan R, Li Y, Gong S, et al. Hierarchical CoFe oxyhydroxides nanosheets and Co2P nanoparticles grown on Ni foam for overall water splitting [J]. Electrochim. Acta, 2020, 360: 136994
45 Liu J, Zheng M, Shi X, et al. Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors [J]. Adv. Funct. Mater., 2016, 26: 919
46 Chemelewski W D, Lee H C, Lin J F, et al. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting [J]. J. Am. Chem. Soc., 2014, 136: 2843
doi: 10.1021/ja411835a pmid: 24475949
[1] 徐展源, 赵伟, 史湘石, 张振宇, 王中钢, 韩勇, 范景莲. 成分调节对软磁MnZn铁氧体结构和磁性的影响[J]. 材料研究学报, 2025, 39(1): 55-62.
[2] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[3] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[4] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[5] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[6] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[7] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[8] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[9] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[10] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[11] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[12] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[13] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[14] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[15] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.