|
|
B4C-Al2O3 复合陶瓷的增韧机理 |
张巍1( ), 张杰1,2 |
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2.沈阳工业大学材料科学与工程学院 沈阳 110870 |
|
Toughening Mechanism of B4C-Al2O3 Composite Ceramics |
ZHANG Wei1( ), ZHANG Jie1,2 |
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
引用本文:
张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
Wei ZHANG,
Jie ZHANG.
Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. Chinese Journal of Materials Research, 2024, 38(8): 614-620.
1 |
Zhang W. An overview of the synthesis of silicon carbide-boron carbide composite powders [J]. Nanotechnol. Rev., 2023, 12: 20220571
|
2 |
Zhang W, Yamashita S, Kita H. Progress in pressureless sintering of boron carbide ceramics-a review [J]. Adv. Appl. Ceram., 2019, 118(4): 222
doi: 10.1080/17436753.2019.1574285
|
3 |
Zhang W. A review of tribological properties for boron carbide ceramics [J]. Prog. Mater. Sci., 2021, 116: 100718
|
4 |
Zhang W. A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide [J]. Adv. Colloid Interface Sci., 2022, 301: 102604
|
5 |
Zhang W, Chen X Y, Yamashita S, et al. B4C-SiC ceramics with interfacial nanorelief morphologies and low underwater friction and wear [J]. ACS Appl. Nano Mater., 2021, 4(3): 3159
|
6 |
Hwang C, Yang Q, Xiang S, et al. Fabrication of dense B4C-preceramic polymer derived SiC composite [J]. J. Eur. Ceram. Soc., 2019, 39(4): 718
doi: 10.1016/j.jeurceramsoc.2018.12.029
|
7 |
Chen W, Hao W H, Gao D Q, et al. Effect of sintering temperature on microstructure and physical and mechanical properties of B4C matrix composite ceramic [J]. Superhard Mater. Eng., 2020, 32(6): 35
|
7 |
陈 威, 郝文慧, 高东强 等. 烧结温度对B4C基复合陶瓷的组织及物理力学性能的影响 [J]. 超硬材料工程, 2020, 32(6): 35
|
8 |
Xu C M, Zeng H, Zhang G J. Pressureless sintering of boron carbide ceramics with Al-Si additives [J]. Int. J. Refract. Met. Hard Mater., 2013, 41: 2
|
9 |
Zhang W, Yamashita S, Kita H. Tribological properties of SiC-B4C ceramics under dry sliding condition [J]. J. Eur. Ceram. Soc., 2020, 40(8): 2855
|
10 |
Baharvandi H R, Hadian A M. Pressureless sintering of TiB2-B4C ceramic matrix composite [J]. J. Mater. Eng. Perform., 2008, 17(6): 838
|
11 |
Zhang Z X, Du X W, Wang W M, et al. Preparation of B4C-SiC composite ceramics through hot pressing assisted by mechanical alloying [J]. Int. J. Refract. Met. Hard Mater., 2013, 41: 270
|
12 |
Zhang W, Zhang J, Duan C L, et al. Research progress in Al2O3 thermal shock resistant ceramics [J]. J. Shenyang Univ. Technol., 2020, 42(6): 624
|
12 |
张 巍, 张 金, 段春雷 等. Al2O3抗热震陶瓷的研究进展 [J]. 沈阳工业大学学报, 2020, 42(6): 624
|
13 |
Wang H, Zhao H F, Kang J S, et al. Properties of ZnO varistor ceramics Co-doped with B2O3 and Al2O3 [J]. Chin. J. Mater. Res., 2021, 35(2): 110
|
13 |
王 昊, 赵洪峰, 康加爽 等. B2O3和Al2O3共同掺杂ZnO压敏陶瓷的性能 [J]. 材料研究学报, 2021, 35(2): 110
|
14 |
She J H, Guo J K, Jiang D L. Hot isostatic pressing of α-silicon carbide ceramics [J]. Ceram. Int., 1993, 19(5): 347
|
15 |
Tekeli S. The flexural strength, fracture toughness, hardness and densification behaviour of various amount of Al2O3-doped 8YSCZ/Al2O3 composites used as an electrolyte for solid oxide fuel cell [J]. Mater. Des., 2006, 27: 230
|
16 |
Lee C H, Kim C H. Pressureless sintering and related phenomena of Al2O3-doped B4C reaction [J]. J. Mater. Sci., 1992, 27(23): 6335
|
17 |
Jiang H W, Fu S N, Huang H L, et al. Pressureless sintering of boron carbide with an addition of alumina [J]. Powder Metall. Technol., 2017, 35(6): 462
|
18 |
Kim H W, Koh Y H, Kim H E. Densification and mechanical properties of B4C with Al2O3 as a sintering aid [J]. J. Am. Ceram. Soc., 2000, 83(11): 2863
|
19 |
So S M, Choi W H, Kim K H, et al. Mechanical properties of B4C-SiC composites fabricated by hot-press sintering [J]. Ceram. Int., 2020, 46(7): 9575
|
20 |
Wang J Q, Tian X L, Zhang B G, et al. Fracture toughness measurement based on laser cutting for Si3N4 ceramics [J]. B. Chin. Ceram. Soc., 2013, 32(1): 103
|
20 |
王健全, 田欣利, 张保国 等. 基于激光切割的Si3N4陶瓷断裂韧性测试方法 [J]. 硅酸盐通报, 2013, 32(1): 103
|
21 |
Ren Q, Su H J, Zhang J, et al. Microstructure control, competitive growth and precipitation rule in faceted Al2O3/Er3Al5O12 eutectic in situ composite ceramics prepared by laser floating zone melting [J]. J. Eur. Ceram. Soc., 2019, 39(5): 1900
|
22 |
Moshtaghioun B M, Ortiz A L, García D G, et al. Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition [J]. J. Eur. Ceram. Soc., 2013, 33(8): 1395
|
23 |
Li C R, Li S, An D, et al. Microstructure and mechanical properties of spark plasma sintered SiC ceramics aided by B4C [J]. Ceram. Int., 2020, 46(8): 10142
|
24 |
Eom J H, Kim Y W, Raju S. Processing and properties of macroporous silicon carbide ceramics: A review [J]. J. Asian Ceram. Soc., 2013, 1(3): 220
|
25 |
Zhang W. Recent progress in B4C-SiC composite ceramics: processing, microstructure, and mechanical properties [J]. Mater. Adv., 2023, 4(15): 3140
|
26 |
Su X J, Liu Y H, Chen K. Effects of microstructure on fracture toughness of Al2O3 ceramic materials [J]. J. Inorg. Mater., 1994, 9(2): 221
|
26 |
苏雪筠, 刘粤惠, 陈 楷. 氧化铝瓷的显微结构与断裂韧性关系的研究 [J]. 无机材料学报, 1994, 9(2): 221
|
27 |
Zhang Z. Research on fracture mode and fracture toughness of typical engineering ceramics [D]. Qinhuangdao: Yanshan University, 2017
|
27 |
张 震. 典型工程陶瓷材料的断裂形式及断裂韧性研究 [D]. 秦皇岛: 燕山大学, 2017
|
28 |
Zhang W, Yamashita S, Kumazawa T, et al. A study on formation mechanisms of relief structure formed in situ on the surface of ceramics [J]. Ceram. Int., 2019, 45(17): 23143
doi: 10.1016/j.ceramint.2019.08.008
|
29 |
Yaşar Z A, Haber R A. Evaluating the role of uniformity on the properties of B4C-SiC composites [J]. Ceram. Int., 2021, 47(4): 4838
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|