Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (8): 614-620    DOI: 10.11901/1005.3093.2023.521
  研究论文 本期目录 | 过刊浏览 |
B4C-Al2O3 复合陶瓷的增韧机理
张巍1(), 张杰1,2
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.沈阳工业大学材料科学与工程学院 沈阳 110870
Toughening Mechanism of B4C-Al2O3 Composite Ceramics
ZHANG Wei1(), ZHANG Jie1,2
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
Wei ZHANG, Jie ZHANG. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. Chinese Journal of Materials Research, 2024, 38(8): 614-620.

全文: PDF(9799 KB)   HTML
摘要: 

在碳化硼(B4C)陶瓷中加入第二相Al2O3,研究其对B4C陶瓷断裂韧性的影响和B4C-Al2O3复合陶瓷的增韧机理。结果表明,在B4C陶瓷中引入第二相Al2O3使B4C陶瓷的断裂韧性提高。Al2O3加入量为40% (质量分数)的B4C-Al2O3复合陶瓷,其断裂韧性达到最大值4.96 MPa·m1/2。B4C-Al2O3复合陶瓷的增韧机理是,在B4C-Al2O3复合陶瓷中裂纹的扩展过程中Al2O3晶粒形成了解理结构。这种解理结构,延长了裂纹扩展的路径和消耗了部分裂纹扩展能。同时,Al2O3晶粒与B4C晶粒之间因热膨胀失配而产生了残余应力。虽然B4C晶粒内的压应力有利于抑制裂纹的扩展,但是B4C晶粒与Al2O3晶粒的相界处产生的张应力在一定程度上弱化相界的结合而使部分裂纹在扩展过程中沿晶扩展出现偏转,从而使B4C-Al2O3复合陶瓷的断裂韧性提高。

关键词 无机非金属材料断裂韧性B4C-Al2O3复合陶瓷解理结构热膨胀失配裂纹扩展    
Abstract

B4C ceramics has extremely high hardness, but its fracture toughness is low. In order to improve the fracture toughness of B4C ceramics, the effect of introducing the second phase Al2O3 on the fracture toughness of B4C ceramics is studied, and the toughening mechanism of B4C-Al2O3 composite ceramics is explored. The results indicate that the addition of Al2O3 as the second phase can improve the fracture toughness of B4C ceramics. Among others, the fracture toughness of B4C-Al2O3 composite ceramics with 40%Al2O3 reaches a maximum value of 4.96 MPa·m1/2. The toughening mechanism of B4C-Al2O3 composite ceramics is that Al2O3 grains experience cleavage cracking during the crack propagation, increasing the path of crack propagation; thus, part of crack propagation energy is consumed. Meanwhile, residual stress is generated between Al2O3 grains and B4C grains due to their thermal expansion mismatch. On the one hand, the compressive stress inside B4C grains is beneficial for inhibiting crack propagation. On the other hand, the tensile stress generated at the phase boundary between B4C grains and Al2O3 grains weakens the bonding of the phase boundary to some extent, leading to some cracks propagating along the phase boundary during the propagation process; therefore, some cracks are deflected, and so the fracture toughness of B4C-Al2O3 composite ceramics is improved.

Key wordsinorganic non-metallic materials    fracture toughness    B4C-Al2O3 composite ceramics    cleavage structure    thermal expansion mismatch    crack propagation
收稿日期: 2023-10-24     
ZTFLH:  TB321  
基金资助:辽宁省自然科学基金(2022-MS-013);中国科学院金属研究所自主部署项目(E255L401);沈阳材料科学国家研究中心青年人才项目(E21SL412)
通讯作者: 张巍,副研究员,cnzhangwei2008@126.com,研究方向为无机非金属材料结构和物性等
Corresponding author: ZHANG Wei, Tel: 15542342305, email: cnzhangwei2008@126.com
作者简介: 张 巍,男,1982年生,博士
B4CAl2O3Al2O3 + Y2O3
A09109
A190100
A280200
A370300
A460400
表1  B4C-Al2O3复合陶瓷的成分设计(质量分数,%)
图1  B4C-Al2O3复合陶瓷的XRD谱
Relative density / %Grain size / μm
B4CAl2O3Avg.
A098.41.07--
A188.91.051.561.08
A296.11.011.221.04
A398.80.751.470.90
A498.50.811.631.05
表2  B4C-Al2O3复合陶瓷的相对密度和晶粒尺寸
图2  A4试样的表面形貌
图3  A3试样中晶粒的形貌
图4  B4C-Al2O3复合陶瓷的断裂韧性
图5  A1和A3试样断裂韧性的表面形貌
图6  B4C-Al2O3复合陶瓷用单边切口梁法测试断裂韧性试样的断口形貌图
图7  A4试样的高分辨透射电镜照片和B4C-Al2O3复合陶瓷中应力分布示意图
1 Zhang W. An overview of the synthesis of silicon carbide-boron carbide composite powders [J]. Nanotechnol. Rev., 2023, 12: 20220571
2 Zhang W, Yamashita S, Kita H. Progress in pressureless sintering of boron carbide ceramics-a review [J]. Adv. Appl. Ceram., 2019, 118(4): 222
doi: 10.1080/17436753.2019.1574285
3 Zhang W. A review of tribological properties for boron carbide ceramics [J]. Prog. Mater. Sci., 2021, 116: 100718
4 Zhang W. A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide [J]. Adv. Colloid Interface Sci., 2022, 301: 102604
5 Zhang W, Chen X Y, Yamashita S, et al. B4C-SiC ceramics with interfacial nanorelief morphologies and low underwater friction and wear [J]. ACS Appl. Nano Mater., 2021, 4(3): 3159
6 Hwang C, Yang Q, Xiang S, et al. Fabrication of dense B4C-preceramic polymer derived SiC composite [J]. J. Eur. Ceram. Soc., 2019, 39(4): 718
doi: 10.1016/j.jeurceramsoc.2018.12.029
7 Chen W, Hao W H, Gao D Q, et al. Effect of sintering temperature on microstructure and physical and mechanical properties of B4C matrix composite ceramic [J]. Superhard Mater. Eng., 2020, 32(6): 35
7 陈 威, 郝文慧, 高东强 等. 烧结温度对B4C基复合陶瓷的组织及物理力学性能的影响 [J]. 超硬材料工程, 2020, 32(6): 35
8 Xu C M, Zeng H, Zhang G J. Pressureless sintering of boron carbide ceramics with Al-Si additives [J]. Int. J. Refract. Met. Hard Mater., 2013, 41: 2
9 Zhang W, Yamashita S, Kita H. Tribological properties of SiC-B4C ceramics under dry sliding condition [J]. J. Eur. Ceram. Soc., 2020, 40(8): 2855
10 Baharvandi H R, Hadian A M. Pressureless sintering of TiB2-B4C ceramic matrix composite [J]. J. Mater. Eng. Perform., 2008, 17(6): 838
11 Zhang Z X, Du X W, Wang W M, et al. Preparation of B4C-SiC composite ceramics through hot pressing assisted by mechanical alloying [J]. Int. J. Refract. Met. Hard Mater., 2013, 41: 270
12 Zhang W, Zhang J, Duan C L, et al. Research progress in Al2O3 thermal shock resistant ceramics [J]. J. Shenyang Univ. Technol., 2020, 42(6): 624
12 张 巍, 张 金, 段春雷 等. Al2O3抗热震陶瓷的研究进展 [J]. 沈阳工业大学学报, 2020, 42(6): 624
13 Wang H, Zhao H F, Kang J S, et al. Properties of ZnO varistor ceramics Co-doped with B2O3 and Al2O3 [J]. Chin. J. Mater. Res., 2021, 35(2): 110
13 王 昊, 赵洪峰, 康加爽 等. B2O3和Al2O3共同掺杂ZnO压敏陶瓷的性能 [J]. 材料研究学报, 2021, 35(2): 110
14 She J H, Guo J K, Jiang D L. Hot isostatic pressing of α-silicon carbide ceramics [J]. Ceram. Int., 1993, 19(5): 347
15 Tekeli S. The flexural strength, fracture toughness, hardness and densification behaviour of various amount of Al2O3-doped 8YSCZ/Al2O3 composites used as an electrolyte for solid oxide fuel cell [J]. Mater. Des., 2006, 27: 230
16 Lee C H, Kim C H. Pressureless sintering and related phenomena of Al2O3-doped B4C reaction [J]. J. Mater. Sci., 1992, 27(23): 6335
17 Jiang H W, Fu S N, Huang H L, et al. Pressureless sintering of boron carbide with an addition of alumina [J]. Powder Metall. Technol., 2017, 35(6): 462
18 Kim H W, Koh Y H, Kim H E. Densification and mechanical properties of B4C with Al2O3 as a sintering aid [J]. J. Am. Ceram. Soc., 2000, 83(11): 2863
19 So S M, Choi W H, Kim K H, et al. Mechanical properties of B4C-SiC composites fabricated by hot-press sintering [J]. Ceram. Int., 2020, 46(7): 9575
20 Wang J Q, Tian X L, Zhang B G, et al. Fracture toughness measurement based on laser cutting for Si3N4 ceramics [J]. B. Chin. Ceram. Soc., 2013, 32(1): 103
20 王健全, 田欣利, 张保国 等. 基于激光切割的Si3N4陶瓷断裂韧性测试方法 [J]. 硅酸盐通报, 2013, 32(1): 103
21 Ren Q, Su H J, Zhang J, et al. Microstructure control, competitive growth and precipitation rule in faceted Al2O3/Er3Al5O12 eutectic in situ composite ceramics prepared by laser floating zone melting [J]. J. Eur. Ceram. Soc., 2019, 39(5): 1900
22 Moshtaghioun B M, Ortiz A L, García D G, et al. Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition [J]. J. Eur. Ceram. Soc., 2013, 33(8): 1395
23 Li C R, Li S, An D, et al. Microstructure and mechanical properties of spark plasma sintered SiC ceramics aided by B4C [J]. Ceram. Int., 2020, 46(8): 10142
24 Eom J H, Kim Y W, Raju S. Processing and properties of macroporous silicon carbide ceramics: A review [J]. J. Asian Ceram. Soc., 2013, 1(3): 220
25 Zhang W. Recent progress in B4C-SiC composite ceramics: processing, microstructure, and mechanical properties [J]. Mater. Adv., 2023, 4(15): 3140
26 Su X J, Liu Y H, Chen K. Effects of microstructure on fracture toughness of Al2O3 ceramic materials [J]. J. Inorg. Mater., 1994, 9(2): 221
26 苏雪筠, 刘粤惠, 陈 楷. 氧化铝瓷的显微结构与断裂韧性关系的研究 [J]. 无机材料学报, 1994, 9(2): 221
27 Zhang Z. Research on fracture mode and fracture toughness of typical engineering ceramics [D]. Qinhuangdao: Yanshan University, 2017
27 张 震. 典型工程陶瓷材料的断裂形式及断裂韧性研究 [D]. 秦皇岛: 燕山大学, 2017
28 Zhang W, Yamashita S, Kumazawa T, et al. A study on formation mechanisms of relief structure formed in situ on the surface of ceramics [J]. Ceram. Int., 2019, 45(17): 23143
doi: 10.1016/j.ceramint.2019.08.008
29 Yaşar Z A, Haber R A. Evaluating the role of uniformity on the properties of B4C-SiC composites [J]. Ceram. Int., 2021, 47(4): 4838
[1] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[2] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[3] 景婷, 梁哲铭, 于洋. 高温合金基于二次K熵的疲劳扩展声发射特征[J]. 材料研究学报, 2024, 38(7): 490-498.
[4] 吴倩芳, 何群, 常兵, 全宇鑫, 胡敬文, 李赛赛, 曹迎楠. 玻璃纤维基隔热多孔陶瓷的制备及其对中子的屏蔽性能[J]. 材料研究学报, 2024, 38(6): 471-480.
[5] 王俊, 王炫力, 刘爽, 宋蕊, 宋希文. Mn掺杂对(Y0.4Er0.6)3Al5O12 热障涂层材料的微观结构和导热性能的影响[J]. 材料研究学报, 2024, 38(6): 463-470.
[6] 郭智楠, 赵强, 李淑英, 王俊丽, 许琳, 尚建鹏, 郭永. 二维层状ZnNiAl-LDH负载氧化亚铜光催化剂的制备及其降解性能[J]. 材料研究学报, 2024, 38(6): 423-429.
[7] 王伟, 常文娟, 吕凡凡, 解泽磊, 于呈呈. 氟化六方氮化硼的制备及其作为水基添加剂的摩擦学性能[J]. 材料研究学报, 2024, 38(6): 410-422.
[8] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[9] 王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
[10] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[11] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[12] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[13] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[14] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[15] 曾道平, 安同邦, 郑韶先, 代海洋, 曹志龙, 马成勇. 440 MPa级高强钢焊缝金属的断裂韧性[J]. 材料研究学报, 2024, 38(2): 151-160.