B4C-Al2O3 复合陶瓷的增韧机理
1.
2.
Toughening Mechanism of B4C-Al2O3 Composite Ceramics
1.
2.
通讯作者: 张巍,副研究员,cnzhangwei2008@126.com,研究方向为无机非金属材料结构和物性等
收稿日期: 2023-10-24 修回日期: 2024-03-02
基金资助: |
|
Corresponding authors: ZHANG Wei, Tel:
Received: 2023-10-24 Revised: 2024-03-02
Fund supported: |
|
作者简介 About authors
张 巍,男,1982年生,博士
在碳化硼(B4C)陶瓷中加入第二相Al2O3,研究其对B4C陶瓷断裂韧性的影响和B4C-Al2O3复合陶瓷的增韧机理。结果表明,在B4C陶瓷中引入第二相Al2O3使B4C陶瓷的断裂韧性提高。Al2O3加入量为40% (质量分数)的B4C-Al2O3复合陶瓷,其断裂韧性达到最大值4.96 MPa·m1/2。B4C-Al2O3复合陶瓷的增韧机理是,在B4C-Al2O3复合陶瓷中裂纹的扩展过程中Al2O3晶粒形成了解理结构。这种解理结构,延长了裂纹扩展的路径和消耗了部分裂纹扩展能。同时,Al2O3晶粒与B4C晶粒之间因热膨胀失配而产生了残余应力。虽然B4C晶粒内的压应力有利于抑制裂纹的扩展,但是B4C晶粒与Al2O3晶粒的相界处产生的张应力在一定程度上弱化相界的结合而使部分裂纹在扩展过程中沿晶扩展出现偏转,从而使B4C-Al2O3复合陶瓷的断裂韧性提高。
关键词:
B4C ceramics has extremely high hardness, but its fracture toughness is low. In order to improve the fracture toughness of B4C ceramics, the effect of introducing the second phase Al2O3 on the fracture toughness of B4C ceramics is studied, and the toughening mechanism of B4C-Al2O3 composite ceramics is explored. The results indicate that the addition of Al2O3 as the second phase can improve the fracture toughness of B4C ceramics. Among others, the fracture toughness of B4C-Al2O3 composite ceramics with 40%Al2O3 reaches a maximum value of 4.96 MPa·m1/2. The toughening mechanism of B4C-Al2O3 composite ceramics is that Al2O3 grains experience cleavage cracking during the crack propagation, increasing the path of crack propagation; thus, part of crack propagation energy is consumed. Meanwhile, residual stress is generated between Al2O3 grains and B4C grains due to their thermal expansion mismatch. On the one hand, the compressive stress inside B4C grains is beneficial for inhibiting crack propagation. On the other hand, the tensile stress generated at the phase boundary between B4C grains and Al2O3 grains weakens the bonding of the phase boundary to some extent, leading to some cracks propagating along the phase boundary during the propagation process; therefore, some cracks are deflected, and so the fracture toughness of B4C-Al2O3 composite ceramics is improved.
Keywords:
本文引用格式
张巍, 张杰.
ZHANG Wei, ZHANG Jie.
B4C陶瓷的硬度极高但是断裂韧性较低,影响其应用。Hwang等[6]采用放电等离子烧结技术制备的单相B4C陶瓷,其断裂韧性仅为2.0 MPa·m1/2。陈威等[7]热压烧结制备的单相B4C陶瓷,其断裂韧性为2.58 MPa·m1/2。Xu等[8]发现,添加5% (质量分数)Al-Si二元烧结助剂的无压烧结B4C陶瓷,其断裂韧性为2.9 MPa·m1/2。Zhang等[9]使用3% (质量分数)纳米炭黑作为烧结助剂无压烧结制备的B4C陶瓷,其断裂韧性为3.2 MPa·m1/2。较低的断裂韧性限制了B4C陶瓷的应用。在B4C陶瓷基体中添加第二相,可使B4C陶瓷增韧。Baharvandi和Hadian[10]引入30% (质量分数)TiB2无压烧结制备的B4C-TiB2复合陶瓷,其断裂韧性为3.4 MPa·m1/2。Zhang等[11]热压烧结制备的B4C-50% (质量分数)SiC复合陶瓷,其断裂韧性为4.6 MPa·m1/2。
氧化铝(Al2O3)的熔点、硬度和强度较高[12,13],常作为增韧相添加到陶瓷基体中。She等[14]发现,在单相SiC陶瓷添加5% (质量分数)的Al2O3可使其断裂韧性提高到5.41 MPa·m1/2。Tekeli[15]指出,在ZrO2陶瓷中引入10% (质量分数)的Al2O3可使其断裂韧性由1.5 MPa·m1/2提高到2.4 MPa·m1/2。Al2O3作为烧结助剂能促进B4C陶瓷的烧结。Lee和Kim[16]指出,添加3% (质量分数)的Al2O3能促进无压条件下B4C陶瓷的烧结。Al2O3烧结助剂不仅能促进B4C陶瓷的烧结,还能改善B4C陶瓷的微观结构和提高其力学性能。其原因是,Al2O3能为B4C烧结提供液相扩散和钉扎效应,因而抑制了B4C晶粒的异常长大[17];在B4C中添加Al2O3虽然因其热膨胀失配产生残余应力不利于其他力学性能(如弯曲强度),但是却有利于提高其断裂韧性[18]。鉴于此,本文用热压烧结工艺制备不同Al2O3含量的B4C-Al2O3复合陶瓷,研究Al2O3对其断裂韧性的影响并揭示其增韧机理。
1 实验方法
1.1 B4C-Al2O3 复合陶瓷的制备
制备B4C-Al2O3复合陶瓷的原料有:B4C粉末(D50 = 0.21 μm,纯度94.4%)和Al2O3粉末(D50 = 2.36 μm,纯度99.99%)。为了与在相同温度下烧结的单相B4C陶瓷对比,还以B4C粉末为原料,以Al2O3粉末和Y2O3粉末(D50 = 1.32 μm,纯度99.999%)为烧结助剂制备了B4C陶瓷。
根据表1中的成分,将B4C和Al2O3或B4C和烧结助剂Al2O3、Y2O3粉末混合后进行高能球磨、干燥、过筛,得到混合粉体。将混合粉体装入直径为50 mm的石墨模具并置于ZT-63-20YB型高温热压烧结炉在氩气气氛中烧结。烧结工艺为:温度为1950℃,压力为30 MPa,保温保压时间为1 h。将烧结好的圆盘试样打磨、切割和抛光,制备测试断裂韧性的试样,其尺寸分别为22 mm × 22 mm × 3 mm (压痕法)和4 mm × 3 mm × 36 mm (单边切口梁法)。
表1 B4C-Al2O3复合陶瓷的成分设计(质量分数,%)
Table 1
B4C | Al2O3 | Al2O3 + Y2O3 | |
---|---|---|---|
A0 | 91 | 0 | 9 |
A1 | 90 | 10 | 0 |
A2 | 80 | 20 | 0 |
A3 | 70 | 30 | 0 |
A4 | 60 | 40 | 0 |
1.2 性能表征
用D-8 Advanced型X射线衍射分析仪(XRD)分析试样的物相组成;用Supra35型扫描电子显微镜(SEM)和Talos F200X G2型透射电子显微镜(TEM)观察试样的微观组织结构。分别根据TEM图片和SEM图片统计B4C晶粒和Al2O3晶粒的平均晶粒尺寸。用Archimedes排水法测定试样的密度并计算相对密度;用压痕法测试试样的断裂韧性;用Q10A型维氏硬度计和压痕法测试试样的断裂韧性,载荷5 kg,保压时间15 s,并记录维氏硬度。用CMT4204型万能试验机和单边切口梁法测试试样的断裂韧性,加载速度0.5 mm/min,支点跨距30 mm,切口深度2 mm。用压痕法和单边切口梁法测试试样断裂韧性,计算公式分别为[19,20]
式中KIC为断裂韧性(MPa·m1/2),E为弹性模量(GPa),H为维氏硬度(MPa),P为载荷(N),c为裂纹半长(mm),P为断裂载荷(N),S为支点跨距(mm),a为切口深度(mm),B为试样宽度(mm),W为试样高度(mm),
为试样的形状因子。
2 结果和讨论
2.1 B4C-Al2O3 复合陶瓷的物相组成
图1
2.2 B4C-Al2O3 复合陶瓷的相对密度和晶粒尺寸
表2列出了B4C-Al2O3复合陶瓷的相对密度和晶粒尺寸。在1950℃烧结原位生成的烧结助剂Y3Al5O12促进了单相B4C陶瓷的烧结,使其相对密度提高。B4C-Al2O3复合陶瓷的相对密度随着Al2O3加入量由10%提高到30%而增加,Al2O3的加入量再增加基本上保持不变。Al2O3的熔点(2054℃)低于B4C的熔点(2450℃)。根据B4C-Al2O3的二元相图,引入Al2O3能降低B4C陶瓷的烧结温度。因此,Al2O3作为第二相可促进B4C陶瓷的烧结,加入量Al2O3 ≥ 20%的B4C-Al2O3复合陶瓷其致密度较高。
表2 B4C-Al2O3复合陶瓷的相对密度和晶粒尺寸
Table 2
Relative density / % | Grain size / μm | |||
---|---|---|---|---|
B4C | Al2O3 | Avg. | ||
A0 | 98.4 | 1.07 | - | - |
A1 | 88.9 | 1.05 | 1.56 | 1.08 |
A2 | 96.1 | 1.01 | 1.22 | 1.04 |
A3 | 98.8 | 0.75 | 1.47 | 0.90 |
A4 | 98.5 | 0.81 | 1.63 | 1.05 |
从表2还可以看出,B4C-Al2O3复合陶瓷中Al2O3的平均晶粒尺寸为1.22~1.63 μm,B4C的平均晶粒尺寸为0.75~1.05 μm。Al2O3的平均晶粒尺寸小于初始Al2O3粉末粒径的原因是,高能球磨减小了Al2O3粉末的晶粒。B4C晶粒和Al2O3晶粒的尺寸均先减小后增大,且Al2O3的晶粒尺寸大于B4C的晶粒尺寸。计算结果表明,随着Al2O3含量的提高B4C-Al2O3复合陶瓷的平均晶粒尺寸先减小后增大。但是在总体上,B4C-Al2O3复合陶瓷的平均晶粒尺寸相差不明显,其范围为0.90~1.08 μm。Al2O3作为第二相引入B4C陶瓷抑制了B4C晶粒的长大,因此B4C的晶粒尺寸随着Al2O3含量的提高而减小。但是,Al2O3含量为40%的A4试样其表面局部出现呈树枝晶的Al2O3晶粒(图2)。这是液相再结晶的一种凝固形式[21],表明A4试样中局部出现了液相。局部的液相促进了B4C晶粒和Al2O3晶粒的长大,使A4试样的平均晶粒尺寸略有增大。但是只在局部有液相,A4试样的平均晶粒尺寸并没有明显的增大。图3给出了A3试样典型的TEM照片,可见B4C晶粒大部分呈矩形或椭圆形,Al2O3晶粒的形状不规则。
图2
图3
图3
A3试样中晶粒的形貌
Fig.3
Grain morphology of A3 specimen (a) typical bright-field TEM micrograph and (b) EDS analysis of O element in Fig.3a
2.3 B4C-Al2O3 复合陶瓷的断裂韧性
图4给出了用压痕法和单边切口梁法测出的B4C-Al2O3复合陶瓷的断裂韧性。可以看出,用压痕法测试时,A1试样的断裂韧性明显增大。在本文的实验条件下,A1试样的相对密度较低,材料中有较多的气孔。压头压入较多气孔的陶瓷表面时,一部分能量用于陶瓷致密化,其余的能量驱使裂纹扩展[22],因此裂纹的扩展路径较短。由
图4
图4
B4C-Al2O3复合陶瓷的断裂韧性
Fig.4
Fracture toughness of B4C-Al2O3 composite ceramics
图5
图5
A1和A3试样断裂韧性的表面形貌
Fig.5
Surface morphologies of A1 and A3 specimens tested for fracture toughness via IF (a) A1 and (b) A3
2.4 B4C-Al2O3 复合陶瓷的增韧机理
陶瓷的晶粒尺寸也是影响其断裂韧性的重要因素[25]。晶粒较细的陶瓷中晶界较多,晶界吸收裂纹扩展能使裂纹偏转,不易出现穿晶断裂,从而抑制了裂纹的扩展,有利于提高陶瓷的断裂韧性[23,26]。Moshtaghioun等[22]发现,随着用放电等离子烧结的B4C-SiC陶瓷中晶粒尺寸的减小,其断裂韧性增大。本文制备的B4C-Al2O3复合陶瓷(A1、A2、A3、A4)的平均晶粒尺寸先减小后增大。根据传统理论,B4C-Al2O3复合陶瓷的断裂韧性应该先增大后减小,但是实际的断裂韧性的变化规律并不与之相符。同时,A1、A2、A4试样的平均晶粒尺寸差别不明显,但是其断裂韧性值的差异较大。这表明,本文制备的B4C-Al2O3复合陶瓷,其晶粒尺寸并不是B4C-Al2O3陶瓷增韧的主要因素。
图6给出了用单边切口梁法测试的B4C-Al2O3复合陶瓷断裂韧性试样的断口形貌。可以看出,A0试样以穿晶断裂为主(图6a)。A1试样内的气孔较多(图6b),与表2中的数据相符。根据图6b~e,在B4C-Al2O3复合陶瓷内形成了解理结构(图中的圆圈)。对图6f中B点的EDS分析结果表明,出现解理结构的物相为Al2O3。在晶体结构为三方晶系的Al2O3晶体中,(10
图6
图6
B4C-Al2O3复合陶瓷用单边切口梁法测试断裂韧性试样的断口形貌图
Fig.6
Fracture surfaces of B4C-Al2O3 composite ceramics tested for fracture toughness by SENB (a) A0, (b) A1, (c) A2, (d) A3, (e) A4, (f) EDS analysis of point B in Fig.6 (e)
同时,B4C的热膨胀系数为6.5 × 10-6℃-1,Al2O3的热膨胀系数为8.8 × 10-6℃-1,两者的差别较大。从图7a给出的A4试样的高分辨透射电镜照片可见,B4C晶粒与Al2O3晶粒直接连接,相界没有非晶相,进一步证明图2中的液相只出现在局部。在试样烧结后的冷却过程中,基体相B4C与第二相Al2O3热膨胀失配产生了残余应力,B4C晶粒内部为压应力,Al2O3晶粒内部为张应力(图7b)。因此,当裂纹延伸至B4C晶粒内时裂纹的扩展受到了抑制。同时,在B4C晶粒与Al2O3晶粒的相界产生了张应力。虽然干净的相界使两相晶粒牢固连接而不易使裂纹沿晶扩展[28,29],但是B4C-Al2O3复合陶瓷中B4C晶粒与Al2O3晶粒相界的张应力在一定程度上弱化了相界的结合,使部分裂纹沿晶扩展导致裂纹偏转,从而提高了B4C-Al2O3复合陶瓷的断裂韧性。从图6中试样的断口形貌可见,B4C-Al2O3复合陶瓷的断裂形式从A0试样的穿晶断裂为主逐渐过渡到A2、A3、A4试样的穿晶和沿晶混合断裂模式。这个结果表明,B4C晶粒与Al2O3晶粒相界的张应力使部分裂纹沿晶扩展。
图7
图7
A4试样的高分辨透射电镜照片和B4C-Al2O3复合陶瓷中应力分布示意图
Fig.7
HRTEM image of A4 specimen (a) and schematic diagram of stress distribution in B4C-Al2O3 composite ceramics (b)
3 结论
Al2O3作为第二相引入B4C陶瓷能提高复合陶瓷的断裂韧性,其增韧机理是Al2O3晶粒在裂纹扩展过程中形成的解理结构延长了裂纹扩展的路径。虽然B4C晶粒内部的压应力有利于抑制裂纹的扩展,但是Al2O3晶粒与B4C晶粒间因热膨胀失配产生的张应力能在一定程度上弱化相界的结合,使部分裂纹在扩展过程中沿晶扩展而偏转,从而提高了B4C-Al2O3复合陶瓷的断裂韧性。Al2O3加入量为40%的B4C-Al2O3复合陶瓷,其断裂韧性最大(4.96 MPa·m1/2)。
参考文献
An overview of the synthesis of silicon carbide-boron carbide composite powders
[J].
Progress in pressureless sintering of boron carbide ceramics-a review
[J].Boron carbide (B4C) ceramics has many outstanding performance, such as extremely high hardness, low density, high melting point, high elastic modulus, high thermoelectromotive force, high chemical resistance, high neutron absorption cross section, high impact and excellent wear resistance. Therefore, B4C ceramics can be used in various industrial applications, such as lightweight ceramic armour, high temperature thermocouples, neutron absorber, reactor control rods in nuclear power engineering, polishing media for hard materials, abrasive media for lapping and grinding, and wear resistant components (blasting nozzles, die tips and grinding wheels). Pressureless sintering is the method with industrialised application value for B4C ceramics, however, it is impossible to sinter pure B4C ceramics to high densities without additives by pressureless sintering. So sintering additives must be used to promote the densification of B4C ceramics. The different sintering additives used to promote the densification of boron carbide will be described in this review, including carbon additives, metallic additives, oxide additives, non-oxide additives, combined additives and rare earth oxide additives. Finally, the recent research trends for sintering methods and sintering additives of B4C ceramics will also be proposed.
A review of tribological properties for boron carbide ceramics
[J].
A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide
[J].
B4C-SiC ceramics with interfacial nanorelief morphologies and low underwater friction and wear
[J].
Fabrication of dense B4C-preceramic polymer derived SiC composite
[J].B4C-SiC composites were fabricated via the preceramic polymer (PCP) route combined with pressure-assisted sintering. Fully dense bodies were achieved by controlling surface oxide on B4C powder and pyrolysis conditions for PCP coated powder. We elucidate i) the microstructure and phase developments observed in the process of fabricating dense B4C-PCP derived SiC composites and ii) the mechanical properties and crack deflection behavior of dense bodies. The incorporation of PCP derived SiC to B4C decreases hardness due to the lower hardness value of SiC compared to B4C and the residual carbon accompanied by SiC formation. Instead, the PCP derived SiC improved indentation fracture toughness. The main toughening mechanism supposed is a combination of crack impeding by SiC grains and crack deflection within SiC grains, likely due to the presence of subgrains or layered microstructure in the PCP derived SiC grains.
Effect of sintering temperature on microstructure and physical and mechanical properties of B4C matrix composite ceramic
[J].
烧结温度对B4C基复合陶瓷的组织及物理力学性能的影响
[J].
Pressureless sintering of boron carbide ceramics with Al-Si additives
[J].
Tribological properties of SiC-B4C ceramics under dry sliding condition
[J].
Pressureless sintering of TiB2-B4C ceramic matrix composite
[J].
Preparation of B4C-SiC composite ceramics through hot pressing assisted by mechanical alloying
[J].
Research progress in Al2O3 thermal shock resistant ceramics
[J].
Al2O3抗热震陶瓷的研究进展
[J].
Properties of ZnO varistor ceramics Co-doped with B2O3 and Al2O3
[J].
B2O3和Al2O3共同掺杂ZnO压敏陶瓷的性能
[J].
Hot isostatic pressing of α-silicon carbide ceramics
[J].
The flexural strength, fracture toughness, hardness and densification behaviour of various amount of Al2O3-doped 8YSCZ/Al2O3 composites used as an electrolyte for solid oxide fuel cell
[J].
Pressureless sintering and related phenomena of Al2O3-doped B4C reaction
[J].
Pressureless sintering of boron carbide with an addition of alumina
[J].
Densification and mechanical properties of B4C with Al2O3 as a sintering aid
[J].
Mechanical properties of B4C-SiC composites fabricated by hot-press sintering
[J].
Fracture toughness measurement based on laser cutting for Si3N4 ceramics
[J].
基于激光切割的Si3N4陶瓷断裂韧性测试方法
[J].提出一种采用激光切割技术在Si3 N4陶瓷表面预制微小切口,并结合SENB法测定陶瓷材料断裂韧性的新方法.利用连续激光束在陶瓷表面加工出切口,在三点弯曲实验前后分别运用激光共聚焦显微镜(LSCM)和扫描电镜(SEM)测量切口宽度和深度,而后计算陶瓷材料断裂韧性.在此基础上分析激光输出功率P、激光辐照光斑直径D和激光切割速率Vw与材料断裂韧性值的内在联系.结果表明:输出的激光能量密度达到陶瓷切割加工阈值后,光束在试件表面制得对应切口;切口深宽比为4.3 ~4.8时测得的Si3N4陶瓷断裂韧性值具有较高精度.
Microstructure control, competitive growth and precipitation rule in faceted Al2O3/Er3Al5O12 eutectic in situ composite ceramics prepared by laser floating zone melting
[J].
Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition
[J].
Microstructure and mechanical properties of spark plasma sintered SiC ceramics aided by B4C
[J].
Processing and properties of macroporous silicon carbide ceramics: A review
[J].
Recent progress in B4C-SiC composite ceramics: processing, microstructure, and mechanical properties
[J].
Effects of microstructure on fracture toughness of Al2O3 ceramic materials
[J].
氧化铝瓷的显微结构与断裂韧性关系的研究
[J].
Research on fracture mode and fracture toughness of typical engineering ceramics
[D].
典型工程陶瓷材料的断裂形式及断裂韧性研究
[D].
A study on formation mechanisms of relief structure formed in situ on the surface of ceramics
[J].The formation mechanisms of relief structure formed in situ on the surface of B4C-SiC ceramics were studied. The hardness difference between B4C and SiC is one of the formation conditions of relief structure. SiC grains are subjected to a preferential wearing owing to their lower hardness as compared to B4C grains, resulting in the difference of wear rates between B4C grains and SiC grains. Clean, no gap grain boundary in the B4C-SiC ceramics, which can make B4C grains and SiC grains bond firmly protecting them from pulling out, is another formation condition of relief structure.
Evaluating the role of uniformity on the properties of B4C-SiC composites
[J].
/
〈 |
|
〉 |
