Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (8): 605-613    DOI: 10.11901/1005.3093.2023.543
  研究论文 本期目录 | 过刊浏览 |
用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性
黄闻战(), 陈尧, 陈鹏, 张玉洁, 陈星宇
太原科技大学材料科学与工程学院 太原 030024
Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method
HUANG Wenzhan(), CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu
School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
引用本文:

黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
Wenzhan HUANG, Yao CHEN, Peng CHEN, Yujie ZHANG, Xingyu CHEN. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method[J]. Chinese Journal of Materials Research, 2024, 38(8): 605-613.

全文: PDF(20092 KB)   HTML
摘要: 

用二次发泡法制备不同SiC含量的SiC/Al复合泡沫铝前驱体,再将其在660℃~700℃发泡制备出SiC/Al复合泡沫铝,用EDS、SEM和超景深显微镜等手段对其表征,研究了SiC含量对前驱体致密度的影响、对在不同温度制备的ZL102复合泡沫铝合金的孔隙率、孔数、平均孔径和孔壁厚度的变化,以及黏度对其孔结构稳定性的影响及其机制。结果表明,提高SiC含量可提高前驱体的致密度。680℃是较为适宜的二次发泡温度。随着发泡温度的提高低黏度泡沫铝的平均孔径和孔壁厚度减小,而高黏度泡沫铝的平均孔径增大、孔壁厚度减小。高黏度泡沫铝的孔结构稳定,其孔隙率更高。

关键词 复合材料金属基泡沫铝二次发泡熔体黏度SiC含量    
Abstract

SiC / ZL102 Al-alloy composite foam was prepared via secondary foaming process in the temperature range of 660oC~700oC, by taking the prepared SiC/ZL102 Al-alloy composites with addition of appropriate foaming agent and various SiC amount as precursors. The influence of viscosity of melt composites on the stability of ZL102 Al-alloy foam was studied by revealing the relation between the SiC content with the density of precursor, the variation of porosity, pore number, average pore size and pore wall thickness of the prepared ZL102 Al-alloy foams at different temperatures. The acquired foams were characterized by means of EDS, SEM and super deep field microscope. The results show that with the increasing SiC content the density of the precursors is increased, whilst, the density, precursor with 6wt.%SiC is the highest. The suitable secondary foaming temperature is 680oC. With the increasing foaming temperature, the average pore size and pore wall thickness of low viscosity Al-alloy foam decrease, while the average pore size of high viscosity Al-alloy foam increases and the pore wall thickness decreases. The high viscosity Al-alloy foam has stable pore structure and higher porosity.

Key wordscomposites    metal matrix    aluminum foam    secondary foaming    melt viscosity    SiC content
收稿日期: 2023-11-08     
ZTFLH:  TB331  
基金资助:太原科技大学博士科研启动资金(20192066);来晋优秀博士基金(20202021);山西省高等学校科技创新(2020L0342)
通讯作者: 黄闻战,副教授,2019063@tyust.edu.cn,研究方向为轻质金属材料/多孔材料
Corresponding author: HUANG Wenzhan, Tel: 13889234335, E-mail: 2019063@tyust.edu.cn
作者简介: 黄闻战,男,1989年生,博士
图1  制备前驱体的工艺流程
图2  用二次发泡法制备复合泡沫铝的工艺流程
图3  SiC含量对前驱体致密度的影响
图4  在680℃制备的泡沫铝前驱体的组织
图5  在660℃~700℃制备的1%~8%SiC泡沫铝的二值化图像
图6  在660℃~720℃制备的1%~8%SiC泡沫铝的孔隙率
图7  在680℃制备的1%~8%SiC泡沫铝的金相组织
图8  在680℃制备的6%SiC复合泡沫铝的SEM和EDS图片
图9  在660℃~720℃制备的1%~8%SiC复合泡沫铝孔数的变化
图10  在660℃~720℃制备的1%~8%SiC复合泡沫铝的平均孔径
图11  在660℃~720℃制备的1%~8%SiC复合泡沫铝孔壁厚度的变化
1 Tan W, Yuan L, Can X Z, et al. Fabrication, properties, and applications of open-cell aluminum foams: A review [J]. J. Mater. Sci. Technol., 2021, 62: 11
doi: 10.1016/j.jmst.2020.05.039
2 Wang H, Zhu D, Hou S, et al. Cellular structure and energy absorption of Al Cu alloy foams fabricated via a two-step foaming method [J]. Mater. Des., 2020, 196: 109090
3 Zhang Y. Fluidity of aluminum foam melt and its effect on pore structure [D]. Nanjing: Southeast University., 2021
3 张 益. 泡沫铝熔体的流动性能及其对孔结构的影响 [D]. 南京: 东南大学, 2021
4 Marvi-Mashhadi M, Lopes C S, Llorca J. Surrogate models of the influence of the microstructure on the mechanical properties of closed- and open-cell foams [J]. J. Mater. Sci., 2018, 53: 12937
5 Islam M, Kader M, Hazell P, et al. Investigation of microstructural and mechanical properties of cell walls of closed-cell aluminium alloy foams [J]. Mater. Sci. Eng. A., 2016, 666: 245
6 Guang Z Y, Yan X L, Xu Z, et al. Preparation of complex shaped aluminum foam by a novel casting-foaming method [J]. Mater. Lett., 2021, 293: 129673
7 Hong X C, Liu Y Z, Huang B. Microstructure, properties and strengthening mechanism of TiC/ SiC synergistic reinforced aluminum matrix composites by selective laser melting [J]. Chin. J. Nonferrous Met., 2021, 31(9): 2436
7 洪旭潮, 刘允中, 黄 斌. 激光选区熔化成形TiC/SiC协同增强铝基复合材料的组织性能与强化机制 [J]. 中国有色金属学报, 2021, 31(9): 2436
8 Hui P L, Feng X W, Ge C D, et al. Preparation and characterization of different surface modified SiCp reinforced Al-matrix composites [J]. J. Cent. South Univ., 2020, 27: 2567
9 Saravana K M, Begum S R, Pruncu C, et al. Role of homogeneous distribution of SiC reinforcement on the characteristics of stir casted Al-SiC composites [J]. J. Alloys Compd., 2021, 869: 159250
10 Xiu Z, Yang W, Dong R, et al. Microstructure and mechanical properties of 45vol.%SiCp/7075Al composite [J]. J. Mater. Sci. Technol., 2015, 31(9): 930
11 Shikang F, Insung H, Andrew L, et al. Investigating metal solidification with x-ray imaging [J]. Met., 2022, 12(3): 395
12 Lin H. Basic research on the preparation of steel-aluminum composite foam aluminum sandwich panels [D]. Shenyang: Northeastern University., 2018
12 林 皓. 钢铝复合泡沫铝夹芯板制备的基础研究 [D]. 沈阳: 东北大学, 2018
13 Liang X. Preparation and properties of silicon carbide mesh porous ceramics for porous media combustion [D]. Wuhan: Wuhan University of Science and Technology, 2017
13 梁 雄. 多孔介质燃烧用碳化硅网状多孔陶瓷的制备及性能研究 [D]. 武汉: 武汉科技大学, 2017
14 Imran M, Khan A A. Characterization of Al-7075 metal matrix composites: a review [J]. J. Mater. Res. Technol., 2019, 8(3): 3347
doi: 10.1016/j.jmrt.2017.10.012
15 Miao Q, Zuo X Q, Zhou Y, et al. The pore structure, mechanical properties, sound absorption properties and mechanism of 304 stainless steel fiber/ZL104 aluminum alloy composite foam were studied [J]. Chin. J. Mater. Res., 2023, 37(3): 175
15 苗 琪, 左孝青, 周 芸 等. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理 [J]. 材料研究学报, 2023, 37(3): 175
16 Dong C G, Wang R C, Peng C Q, et al. Research progress of SiCp/Al composites [J]. Chin. J. Nonferrous Met., 2021, 31(11): 3161
16 董翠鸽, 王日初, 彭超群 等. SiCp/Al复合材料研究进展 [J]. 中国有色金属学报, 2021, 31(11): 3161
17 Zhu Z Q, Wang Q P, Min F F, et al. Research progress on interface control of SiCp/Al composites [J]. Mat. Guide., 2021, 35(13): 13139
17 朱志强, 王庆平, 闵凡飞 等. SiCp/Al复合材料界面调控研究进展 [J]. 材料导报, 2021, 35(13): 13139
18 Ma H Y, Zhang J S, An Y K. Research status of the stable forming mechanism of tackifier in aluminum foam [J]. Func. Mater., 2022, 53(6): 6040
18 马浩源, 张均闪, 安钰坤. 增粘剂在泡沫铝孔泡稳定成形机制研究现状 [J]. 功能材料, 2022, 53(6): 6040
doi: 10.3969/j.issn.1001-9731.2022.06.007
19 Xing L Y, Li Y F, Chen X B. The position and role of advanced composite materials in the development of aviation equipment [J]. J. Compos. Mater., 2022, 39(9): 4179
19 邢丽英, 李亚锋, 陈祥宝. 先进复合材料在航空装备发展中的地位与作用 [J]. 复合材料学报, 2022, 39(9): 4179
20 Navya K, Prasanta J, Satish S, et al. Processing and characterization of Al-Si alloy/SiC foam interpenetrating phase composite [J]. Mat. Today: Proc., 2021, 44(P2): 2930
21 Xie D H, Pan R, Zhu S Z, et al. Effect of particle size on microstructure and mechanical properties of B4C/Al-Zn-Mg-Cu composites [J]. Chin. J. Mater. Res., 2023, 37(10): 731
21 谢东航, 潘 冉, 朱士泽 等. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响 [J]. 材料研究学报, 2023, 37(10): 731
doi: 10.11901/1005.3093.2022.574
22 Xu Y, Deng Y, Casari D, et al. In-situ X-radiographic study of nucleation and growth behaviour of primary silicon particles during solidification of a hypereutectic Al-Si alloy [J]. J. Alloys Compd., 2020, 832: 154948
23 Yu H, Dong Q, Chen Y, et al. Influence of silicon on growth mechanism of micro-arc oxidation coating on cast Al-Si alloy [J]. R. Soc. Open Sci., 2018, 5(7): 172428
24 Luksch J, Bleistein T, Koenig K, et al. Microstructural damage behaviour of Al foams [J]. Acta Mater., 2021(6): 116739
25 Wang F, Bian Y, Wang L, et al. Foaming behavior of microsized aluminum foam using hot rolling precursor [J]. Metals, 2023, 13(5): 928
26 Wang J K, Zhang Y Z, Li S S, et al. Preparation of 3C-SiC by carbothermal reduction of diatomite catalyzed by Fe and its mechanism [J]. Chin. J. Mater. Res., 2018, 32(10): 767
26 王军凯, 张远卓, 李赛赛 等. Fe催化硅藻土碳热还原反应制备3C-SiC及其机理 [J]. 材料研究学报, 2018, 32(10): 767
doi: 10.11901/1005.3093.2017.533
27 Zhou C L. Preparation and properties of Ti3SiC2 ceramics and their reinforced Al matrix composites [D]. Guangzhou: South China University of Technology, 2017
27 周超兰. Ti3SiC2陶瓷及其增强Al基复合材料的制备与性能研究 [D]. 广州: 华南理工大学, 2017
28 Zhou X Y, Qin J, Liu X Q, et al. The relationship between cell wall thickness, porosity and average pore size of aluminum foam [J]. Mater. Rep., 2010, 24(4): 75
28 周向阳, 覃 静, 刘希泉 等. 泡沫铝孔壁厚度、孔隙率和平均孔径之间的关系 [J]. 材料导报, 2010, 24(4): 75
[1] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[2] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[3] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[4] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[5] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[6] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[7] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[8] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[9] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
[10] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[11] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[12] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[13] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[14] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[15] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.