Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (8): 569-575    DOI: 10.11901/1005.3093.2023.464
  研究论文 本期目录 | 过刊浏览 |
WO3/PtNiO电极电致变色器件的性能
郝子恒1, 郑刘梦晗2, 张妮1, 蒋恩桐2, 王国政2(), 杨继凯2()
1.微光夜视技术重点实验室 西安 710065
2.长春理工大学物理学院 长春 130022
Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes
HAO Ziheng1, ZHENG Liumenghan2, ZHANG Ni1, JIANG Entong2, WANG Guozheng2(), YANG Jikai2()
1.Science and Technology on Low-Light-Level Night Vision Laboratory, Xi'an 710065, China
2.School of Physics, Changchun University of Science and Technology, Changchun 130022, China
引用本文:

郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
Ziheng HAO, Liumenghan ZHENG, Ni ZHANG, Entong JIANG, Guozheng WANG, Jikai YANG. Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes[J]. Chinese Journal of Materials Research, 2024, 38(8): 569-575.

全文: PDF(6269 KB)   HTML
摘要: 

将水热法和电沉积相结合制备WO3/Pt复合薄膜并表征其组成、微结构和性能,将其作为阴极制做了WO3/Pt-NiO电致变色器件并测试其性能。结果表明,WO3/Pt-NiO电致变色器件具有较为迅速的时间响应 (着色/褪色的为29.62/18.84 s)和适当的光调制范围(630 nm处为47%)。这种WO3/Pt-NiO电致变色器件,具有大光调制、高着色效率和高开关速度等性能。

关键词 复合材料变色性能电致变色WO3/Pt复合薄膜    
Abstract

The application of electrochromic devices (ECDs) in smart windows provides new solutions for energy conservation and environmental protection. WO3/Pt composite films for electrochromic cathodes were prepared through a combination of hydrothermal and electrodeposition methods. WO3/Pt composite films of different deposition times were characterized and their electrochromic properties were examined. Next, NiO thin films were prepared by electrodeposition as electrochromic anodes. WO3/Pt-NiO electrochromic devices were constructed with WO3/Pt composite films and NiO films as color changing cathodes and anodes, respectively. The WO3/Pt-NiO electrochromic device has a relatively fast response time (coloring/fading rate of 18.84/29.62 s) and a good optical modulation range (47% at 630 nm). Its designed ECD has the characteristics of large optical modulation, high coloring efficiency, and fast switching speed. These characteristics make WO3/Pt-NiO electrochromic devices a very promising candidate for smart windows in lighting control and energy-saving applications, and their use as color-changing smart windows has broad application prospects in fields such as architecture, aircraft, and automobiles.

Key wordscomposites    color-change performance    electrochromism    WO3/Pt composite film
收稿日期: 2023-09-16     
ZTFLH:  TB333  
基金资助:国家自然科学基金(51502023);吉林省科技厅项目(20200201077JC);吉林省教育厅项目(JJKH20210800KJ);重庆自然科学基金(CSTB2022NSCQ-MSX0751)
通讯作者: 王国政,教授,wguozheng@163.com,研究方向为光电子技术
杨继凯,副教授,jikaiyang0625@163.com,研究方向为光电成像与器件、光催化、稀土发光材料
Corresponding author: WANG Guozheng, Tel: 13704361080, E-mail: wguozheng@163.com;
YANG Jikai, Tel: 15144163608, E-mail: jikaiyang0625@163.com
作者简介: 郝子恒,男,1990年生,硕士
图1  电致变色器件的结构和原理
图2  WO3/Pt-40 s和NiO薄膜的XRD谱和NiO薄膜的XPS全谱
图3  WO3、WO3/Pt-40 s、WO3/Pt-80 s和NiO膜的SEM形貌
图4  WO3/Pt-40 s和WO3/Pt-80 s复合薄膜局部的EDS能谱
图5  WO3、WO3/Pt-40 s和WO3/Pt-80 s薄膜的循环伏安曲线、注入和抽取电荷变化曲线、透射光谱、光学透过率响应、着色效率和奈奎斯特曲线

Qi or Qdi

mC·cm-2

Reversibility

%

tc or tb

s

Tb/Tc

%

T

%

CE

cm2·C-1

WO331.26/26.5785.0131.22/21.6371.72/24.6347.0914.26
WO3/Pt-40 s38.74/34.9290.1227.47/16.7270.53/15.5155.0226.12
WO3/Pt-80 s34.49/30.3587.9828.13/18.8471.36/18.7252.6417.33
表1  WO3和WO3/Pt薄膜的电致变色性能
图6  WO3-NiO器件和WO3/Pt-NiO器件的注入和抽取电荷变化曲线、透射光谱、光学透过率响应、和着色效率曲线

Qi or Qdi

mC·cm-2

Reversibility

%

tc or tb

s

Tb/Tc

%

T

%

CE

cm2·C-1

WO3-NiO26.26/22.0583.9633.58/23.1765.72/22.6343.0912.21
WO3/Pt-NiO33.74/29.6987.9829.62/18.8464.53/17.5147.0021.33
表2  WO3-NiO和WO3/Pt-NiO电致变色器件的电致变色性能
1 Ke Y J, Zhou C Z, Zhou Y, et al. Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application [J]. Adv. Funct. Mater., 2018, 28(22): 1800113
2 Kolay A, Maity D, Flint H, et al. Self-switching photoelectrochromic device with low cost, plasmonic and conducting Ag nanowires decorated V2O5 and PbS quantum dots [J]. Sol. Energy Mater. Sol. Cells, 2022, 239: 111674
3 Cheng X F, Leng W H, Liu D P, et al. Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light [J]. Chemosphere, 2007, 68(10): 1976
pmid: 17482660
4 Wen R T, Arvizu M A, Morales-Luna M, et al. Ion trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoring [J]. Chem. Mater., 2016, 28(13): 4670
5 Chen X Q, Li P, Tong H, et al. Nanoarchitectonics of a Au nanoprism array on WO3 film for synergistic optoelectronic response [J]. Sci. Technol. Adv. Mater., 2011, 12(4): 044604
6 Hoseinzadeh S, Ghasemiasl R, Bahari A, et al. The injection of Ag nanoparticles on surface of WO3 thin film: enhanced electrochromic coloration efficiency and switching response [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 14855
7 Cui X Z, Guo L M, Cui F M, et al. Electrocatalytic activity and CO tolerance properties of mesostructured Pt/WO3 composite as an anode catalyst for PEMFCs [J]. J. Phys. Chem., 2009, 113C(10) : 4134
8 Qin Y Y, Lu J, Meng F Y, et al. Rationally constructing of a novel 2D/2D WO3/Pt/g-C3N4 Schottky-Ohmic junction towards efficient visible-light-driven photocatalytic hydrogen evolution and mechanism insight [J]. J. Colloid Interface Sci., 2021, 586: 576
9 Zhou Y J, Yang X, Yang J K, et al. Preparation and photoelectrocatalytic properties of WO3/Pt composite film [J]. Acta Photonica Sinica, 2021, 50(3): 0331002
9 周玉鉴, 杨 雪, 杨继凯 等. WO3/Pt复合薄膜的制备及其光电催化性能 [J]. 光子学报, 2021, 50(3): 0331002
10 Pang Y H, Chen Q, Shen X F, et al. Size-controlled Ag nanoparticle modified WO3 composite films for adjustment of electrochromic properties [J]. Thin Solid Films, 2010, 518(8): 1920
11 Rahmanzade K A, Nikfarjam A, Ameri M, et al. Improving electrochromic properties of WO3 thin film with gold nanoparticle additive [J]. Int. J. Eng., 2015, 28(8): 1169
12 Zhang W D, Jiang L C, Ye J S. Photoelectrochemical study on charge transfer properties of ZnO nanowires promoted by carbon nanotubes [J]. J. Phys. Chem., 2009, 113C(36) : 16247
13 Naseri N, Azimirad R, Akhavan O, et al. Improved electrochromical properties of sol-gel WO3 thin films by doping gold nanocrystals [J]. Thin Solid Films, 2010, 518(8): 2250
14 Kadam P M, Tarwal N L, Shinde P S, et al. Enhanced optical modulation due to SPR in gold nanoparticles embedded WO3 thin films [J]. J. Alloys Compd., 2011, 509(5): 1729
15 Kharade R R, Mali S S, Patil S P, et al. Enhanced electrochromic coloration in Ag nanoparticle decorated WO3 thin films [J]. Electrochim. Acta, 2013, 102: 358
16 Fan G F, Zhu H W, Wang K L, et al. Graphene/silicon nanowire Schottky junction for enhanced light harvesting [J]. ACS Appl. Mater. Interfaces, 2011, 3(3): 721
17 Aamir L. Novel p-type Ag-WO3 nano-composite for low-cost electronics, photocatalysis, and sensing: synthesis, characterization, and application [J]. J. Alloys Compd., 2021, 864: 158108
18 Zhou K L, Wang H, Zhang S J, et al. Electrochromic modulation of near-infrared light by WO3 films deposited on silver nanowire substrates [J]. J. Mater. Sci., 2017, 52: 12783
[1] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[2] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[3] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[4] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[5] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[6] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[7] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[8] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[9] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
[10] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[11] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[12] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[13] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[14] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[15] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.