Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (11): 872-880    DOI: 10.11901/1005.3093.2023.493
  研究论文 本期目录 | 过刊浏览 |
双功能催化剂(Cu-Co/X-MMT)的制备和性能
罗洪旭, 赵永华(), 张家慷, 冯效迁, 张启俭, 王欢
辽宁工业大学化学与环境工程学院 锦州 121001
Preparation and Properties of Bi-functional Catalysts (Cu-Co/X-MMT)
LUO Hongxu, ZHAO Yonghua(), ZHANG Jiakang, FENG Xiaoqian, ZHANG Qijian, WANG Huan
School of Chemistry & Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
引用本文:

罗洪旭, 赵永华, 张家慷, 冯效迁, 张启俭, 王欢. 双功能催化剂(Cu-Co/X-MMT)的制备和性能[J]. 材料研究学报, 2024, 38(11): 872-880.
Hongxu LUO, Yonghua ZHAO, Jiakang ZHANG, Xiaoqian FENG, Qijian ZHANG, Huan WANG. Preparation and Properties of Bi-functional Catalysts (Cu-Co/X-MMT)[J]. Chinese Journal of Materials Research, 2024, 38(11): 872-880.

全文: PDF(7139 KB)   HTML
摘要: 

先使用钠基蒙脱土制备不同氧化物柱撑蒙脱土(X-MMT,X = SiO2、Al2O3、ZrO2、TiO2),然后以其为固体酸、以铜为活性组分、钴为助剂用浸渍法制备出一系列双功能催化剂(Cu-Co/X-MMT)。使用X射线衍射(XRD)分析、N2吸附-脱附、NH3-TPD、H2-TPR和X射线光电子能谱(XPS)分析等手段对其表征,研究了不同氧化物柱撑对双功能催化剂(Cu-Co/X-MMT)性能的影响。结果表明,与钠基蒙脱土相比,氧化物柱撑蒙脱土的结构和酸性均发生了明显的变化,变化的程度与氧化物的种类密切相关。不同氧化物柱撑影响铜颗粒的大小和还原程度,进而影响双功能催化剂的二甲醚水蒸气重整反应(SRD)性能。Cu-Co/SiO2-MMT催化剂具有较好的SRD性能,在0.1 MPa、350℃和反应空速(GHSV)为3000 mL/(g·h)条件下二甲醚转化率和氢气收率分别达到80.3%和57.3%。

关键词 复合材料柱撑蒙脱土二甲醚水蒸气重整制氢    
Abstract

A series of bi-functional catalysts (Cu-Co/X-MMT) were prepared via the impregnation method with oxide-pillared montmorillonite (X-MMT, X = SiO2, Al2O3, ZrO2, TiO2) obtained from Na-montmorillonite (Na-MMT) as the solid acid, Cu as active component and Co as promoter. The acquired catalysts were characterized by XRD, N2 adsorption-desorption at low temperature, NH3-TPD, H2-TPR, and XPS. The effect of different kinds of X-MMT on the steam reforming of dimethyl ether (SRD) reaction performance of the acquired bi-functional catalysts was investigated. The results show that the structure and acidity of X-MMT are significantly changed compared with Na-MMT, which is dependent on the type of oxide X, meanwhile, different X-MMT affects the particle size and reduction degree of copper, and thus influencing the SRD reaction performance of bi-functional catalysts. Among others, the Cu-Co/SiO2-MMT bifunctional catalyst exhibits the best SRD performance, with the dimethyl ether conversion and H2 yield reaching 80.3% and 57.3% under the conditions of 0.1 MPa, 350oC and gas hour space velocity (GHSV) of 3000 mL/(g·h), respectively.

Key wordscomposite    pillared montmorillonite    dimethyl ether    steam reforming    hydrogen production
收稿日期: 2023-10-08     
ZTFLH:  O643.3  
基金资助:国家自然科学基金(22075120);辽宁省应用基础研究计划(2023JH2/101300216)
通讯作者: 赵永华,教授,lgdzyh@163.com,研究方向为多相催化与能源化学
Corresponding author: ZHAO Yonghua, Tel: (0416)4199013, E-mail: lgdzyh@163.com
作者简介: 罗洪旭,男,1998年生,硕士生
图1  Cu-Co/X-MMT的XRD谱
图2  Cu-Co/X-MMT的TEM照片
图3  还原后Cu-Co/X-MMT的XRD谱
SampleCu-Co/Na-MMTCu-Co/SiO2-MMTCu-Co/Al2O3-MMTCu-Co/ZrO2-MMTCu-Co /TiO2-MMT
Particle size / nm35.2830.6530.5243.2728.99
表1  还原后催化剂Cu的粒径
图4  样品的氮气吸附-脱附等温线
SampleBET specific surface area / m2·g-1Pore volume / cm3·gAverage pore size / nm
Na-MMT380.088.1
SiO2-MMT2260.133.6
Al2O3-MMT1130.073.7
ZrO2-MMT1880.093.2
TiO2-MMT1490.257.0
表2  样品的孔结构特征
图5  样品的NH3-TPD图
图6  Cu-Co/X-MMT的H2-TPR图
图7  还原催化剂Cu 2p的XPS谱
图8  还原催化剂的Cu LMM俄歇能谱
CatalystKEa/eVXb Cu0/ %Xc Cu+/ %
Cu+Cu0
Cu-Co/Na-MMT914.23918.1150.849.2
Cu-Co/SiO2-MMT914.04918.0162.337.7
Cu-Co/Al2O3-MMT914.02918.1154.145.6
Cu-Co/ZrO2-MMT914.02918.0058.141.9
Cu-Co/TiO2-MMT914.07918.1742.257.8
表3  还原后催化剂的Cu LMM XAES分峰数据
图9  Cu-Co/X-MMT的DME转化率和氢气收率
图10  双功能催化剂含碳产物的选择性
1 Meng X Y, Chen M Y, Gu A L, et al. China's hydrogen development strategy in the context of double carbon targets [J]. Nat. Gas Ind., 2022, 42(4): 156
1 孟翔宇, 陈铭韵, 顾阿伦 等. “双碳”目标下中国氢能发展战略 [J]. 天然气工业, 2022, 42(4): 156
2 Hwang J, Maharjan K, Cho H. A review of hydrogen utilization in power generation and transportation sectors: achievements and future challenges [J]. Int. J. Hydrogen Energy, 2023, 48(74): 28629
3 Ouyang J, Li X, Zhu Y X, et al. Enhanced photocatalytic hydrogen production and carbon dioxide reduction [J]. Chin. J. Mater. Res., 2022, 36(2): 152
doi: 10.11901/1005.3093.2020.495
3 欧阳杰, 李 雪, 祝玉鑫 等. 开放式氮缺陷氮化碳中空微球用于增强光解水制氢和CO2还原 [J]. 材料研究学报, 2022, 36(2): 152
doi: 10.11901/1005.3093.2020.495
4 Jing J Y, Liu L, Xu K, et al. Improved hydrogen production performance of Ni-Al2O3/CaO-CaZrO3 composite catalyst for CO2 sorption enhanced CH4/H2O reforming [J]. Int. J. Hydrogen Energy, 2023, 48(7): 2558
5 Wang E W, Zhang B, Li X M, et al. Fabrication of catalytic carbon membranes and their intensification of hydrogen production reaction from methanol steam reforming [J]. Mater. Rep., 2023, 37(17): 22010107
5 汪尔文, 张 兵, 李欣明 等. 催化炭膜制备及其强化甲醇水蒸气重整制氢反应 [J]. 材料导报, 2023, 37(17): 22010107
6 Ito S I, Kameoka S. Effect of strong metal-oxide interaction on low-temperature ethanol reforming over Fe-promoted Rh/SiO2 catalyst [J]. Appl. Catal., 2021, 617A: 118113
7 Gao T Y, Zhao Y H, Zheng Z, et al. Acid activation of montmorillonite and its application for production of hydrogen via steam reforming of dimethyl ether [J]. J. Fuel Chem. Technol., 2021, 49(10): 1495
7 高天宇, 赵永华, 郑 择 等. 酸活化蒙脱土在二甲醚水蒸气重整制氢中的应用 [J]. 燃料化学学报, 2021, 49(10): 1495
8 Long X, Zhang Q J, Liu Z T, et al. Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether [J]. Appl. Catal., 2013, 134-135B: 381
9 Feng D M, Zuo Y Z, Wang D Z, et al. Steam reforming of dimethyl ether over coupled ZSM-5 and Cu-Zn-based catalysts [J]. Chin. J. Catal., 2009, 30: 223
10 Faungnawakij K, Kikuchi R, Eguchi K. Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether [J]. J. Power Sources, 2007, 164: 73
11 Faungnawakij K, Viriya-Empikul N, Tanthapanichakoon W. Evaluation of the thermodynamic equilibrium of the autothermal reforming of dimethyl ether [J]. Int. J. Hydrogen Energy, 2011, 36: 5865
12 Kim D, Choi B, Park G, et al. Effect of γ-Al2O3 characteristics on hydrogen production of Cu/γ-Al2O3 catalyst for steam reforming of dimethyl ether [J]. Chem. Eng. Sci., 2020, 216: 115535
13 Yang M, Men Y, Li S L, et al. Hydrogen production by steam reforming of dimethyl ether over ZnO-Al2O3 bi-functional catalyst [J]. Int. J. Hydrogen Energy, 2012, 37(10): 8360
14 Gao T Y, Zhao Y H, Zhang Q J, et al. Zinc oxide modified HZSM-5 as an efficient acidic catalyst for hydrogen production by steam reforming of dimethyl ether [J]. React. Kinet. Mech. Cat., 2019, 128: 235
15 Nishiguchi T, Oka K, Matsumoto T, et al. Durability of WO3/ZrO2-CuO/CeO2 catalysts for steam reforming of dimethyl ether [J]. Appl. Catal., 2006, 301A(1) : 66
16 Sun X M, Sha Q H, Wang C W, et al. Application of copper-based catalysts for hydrogen production in methanol steam reforming [J]. CIESC J., 2021, 72(12): 5975
doi: 10.11949/0438-1157.20211085
16 孙晓明, 沙琪昊, 王陈伟 等. 用于甲醇重整制氢的铜基催化剂研究进展 [J]. 化工学报, 2021, 72(12): 5975
doi: 10.11949/0438-1157.20211085
17 Zhao Y H, Song Y H, Hao Q Q, et al. Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer-Tropsch synthesis [J]. Fuel Process. Technol., 2015, 138: 116
18 Cai Y F, Zhou Y J, Lu J F, et al. Removal of methylene blue by Fenton-like system with alkali-activated montmorillonite supported iron catalyst [J]. Acta Mater. Compos. Sin., 2023, 40(8): 4601
18 蔡玉福, 周艳军, 路君凤 等. 碱活化蒙脱土负载铁类芬顿体系去除亚甲基蓝 [J]. 复合材料学报, 2023, 40(8): 4601
19 Li J R, Hu M C, Zuo S F, et al. Catalytic combustion of volatile organic compounds on pillared interlayered clay (PILC)-based catalysts [J]. Curr. Opin. Chem. Eng., 2018, 20: 93
20 Hao Q Q, Wang G W, Liu Z T, et al. Co/Pillared clay bifunctional catalyst for controlling the product distribution of Fischer-Tropsch synthesis [J]. Ind. Eng. Chem. Res., 2010, 49: 9004
21 Luo H X, Zhao Y H, Zhang Q J, et al. The role of promoters in Cu/Acid-MMT catalysts for production of hydrogen via steam reforming of dimethyl ether [J]. J. Chem. Technol. Biotechnol., 2023, 98: 718
22 Moreno S, Kou R S, Molina R, et al. Al-, Al, Zr-, and Zr-pillared montmorillonites and saponites: preparation, characterization, and catalytic activity in heptane hydroconversion [J]. J. Catal., 1999, 182(1): 174
23 Chen H, Cui H S, Lv Y, et al. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts: Effects of ZnO morphology and oxygen vacancy [J]. Fuel, 2022, 314: 123035
24 Huang J J, Cai J M, Ma K, et al. Ga2O3-modifified Cu/-SiO2 catalysts with low CO selectivity for catalytic steam reforming [J]. Acta Phys. Chim. Sin., 2019, 35: 431
24 黄静静, 蔡金孟, 马 奎 等. Ga2O3改性Cu/SiO2催化剂降低水蒸气催化重整产物中CO选择性 [J]. 物理化学学报, 2019, 35: 431
25 Qi X L, Zhou L M, Jiang X H, et al. Montmorillonite-supported copper(I) for catalyzing N-arylation of nitrogen heterocycles [J]. Chin. J. Catal., 2012, 33: 1877
25 綦晓龙, 周丽梅, 蒋晓慧 等. 蒙脱土负载Cu+催化含氮杂环化合物的N-芳基化反应 [J]. 催化学报, 2012, 33: 1877
doi: 10.1016/S1872-2067(11)60458-0
26 Wang D Z, Feng X, Zhang J, et al. Effect of promoter M (M = Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol [J]. J. Fuel Chem. Technol., 2019, 47: 1251
26 王东哲, 冯 旭, 张 健 等. 助剂M (M = Cr、Zn、Y、La)对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响 [J]. 燃料化学学报, 2019, 47: 1251
27 Huang J J, Ding T, Ma K, et al. Modification of Cu/SiO2 catalysts by La2O3 to quantitatively tune Cu+-Cu0 dual sites with improved catalytic activities and stabilities for dimethyl ether steam reforming [J]. ChemCatChem, 2018, 10: 3862
[1] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[2] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[3] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[4] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[5] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[6] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[7] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[8] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[9] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[10] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[11] 武静, 张子怡, 韩旭, 侯星延, 李雪艳, 李莎莎, 刘雯, 李鹏. S/NiFeP/KB复合材料锂硫电池正极的性能[J]. 材料研究学报, 2024, 38(11): 828-836.
[12] 马源, 王函, 倪忠强, 张建岗, 张若南, 孙新阳, 李处森, 刘畅, 曾尤. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能[J]. 材料研究学报, 2024, 38(1): 61-70.
[13] 李朝阳, 薛怿, 阳泽濠, 赵庆志, 彭砚双, 刘勇, 杨建平, 张辉. 聚醚砜多孔纤维网纱层间增韧碳纤维/环氧复合材料的性能[J]. 材料研究学报, 2024, 38(1): 33-42.
[14] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[15] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.