Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (11): 811-820    DOI: 10.11901/1005.3093.2023.302
  研究论文 本期目录 | 过刊浏览 |
聚乳酸基硬碳的制备及其电化学性能研究
敖霜霜, 徐嘉晨, 王宇作, 阮殿波(), 乔志军()
宁波大学 先进储能技术与装备研究院 宁波 315211
Preparation and Electrochemical Properties of Discarded Polylactic Acid Hard Carbon
AO Shuangshuang, XU Jiachen, WANG Yuzuo, RUAN Dianbo(), QIAO Zhijun()
Institute of Advanced Energy Storage Technology and Equipment, NingBo University, NingBo 315211, China
引用本文:

敖霜霜, 徐嘉晨, 王宇作, 阮殿波, 乔志军. 聚乳酸基硬碳的制备及其电化学性能研究[J]. 材料研究学报, 2024, 38(11): 811-820.
Shuangshuang AO, Jiachen XU, Yuzuo WANG, Dianbo RUAN, Zhijun QIAO. Preparation and Electrochemical Properties of Discarded Polylactic Acid Hard Carbon[J]. Chinese Journal of Materials Research, 2024, 38(11): 811-820.

全文: PDF(18247 KB)   HTML
摘要: 

使用废弃吸管基聚乳酸(PLA)为前驱体,用混合磷酸预氧化交联后进行高温碳化制备了废弃PLA基硬碳。结果表明,碳化温度过低使这种PLA基硬碳的孔隙结构不稳定或稳定性较低;碳化温度过高则使非碳元素流失和可逆比容量降低。P元素的引入使硬碳的层间距达到0.37 nm,碳化温度为700℃制备出的废弃PLA基硬碳具有蜂窝状球形框架、较小的比表面积和更丰富的P、O杂原子含量,电流密度为100 mA/g时放电比容量为552 mAh/g,初始库伦效率为58.7% (324 mAh/g),循环100圈后其循环稳定性仍然较高。经多个电流密度循环后,其可逆放电比容量仍为408 mAh/g。

关键词 有机高分子材料聚乳酸硬碳锂离子电池    
Abstract

Polylactic acid (PLA) is a widely used biomass-derived polymer material. A significant amount of discarded polylactic acid is generated every year in the disposable product sector. Herein, a discarded PLA-based hard carbon was synthesized with discarded PLA as precursor, through cross-linking reaction with phosphoric acid and then followed by high-temperature carbonization. The results indicate that excessively lower carbonization temperature will result in unstable pore structure with lower stability. Higher carbonization temperature leads to loss innon-carbon elements and decrease in reversible specific capacity. The introduction of phosphorus (P) increases the spacing between the hard carbon lamellae to 0.37 nm. At carbonization temperature of 700oC, the prepared discarded PLA-based hard carbon presents a honeycomb-like spherical framework with smaller specific surface area, and richer in high content of heteroatoms P and O, therefore exhibits the best electrochemical performance. By testing the assembled lithium-ion battery with electrode made of the acquired hard carbon, results show that by a current density of 100 mA/g, the specific capacity can reach 552 mAh/g; while for an initial Coulomb efficiency of 58.7% (324 mAh/g), the cycle stability is still excellent after 100 cycles. Besides, after multiple cycles at varying current densities, a reversible discharge capacity of 408 mAh/g is still maintained.

Key wordsorganic polymer materials    polylactic acid    hard carbon    lithium-ion battery
收稿日期: 2023-06-20     
ZTFLH:  TM911  
基金资助:浙江省科技计划(2022C01072);宁波市科技计划(2022Z026)
通讯作者: 阮殿波,教授,ruandianbo@nbu.edu.cn,研究方向为超级电容器材料、工艺及工程化技术;
乔志军,教授,qiaozhijun@nbu.edu.cn,研究方向为超级电容器电极材料、器件制造及工程化
Corresponding author: RUAN Dianbo, Tel: (0574)87609953, E-mail: ruandianbo@nbu.edu.cn;
QIAO Zhijun, Tel: (0574)87600302, E-mail: qiaozhijun@nbu.edu.cn
作者简介: 敖霜霜,女,1999年生,博士生
图1  PLA基硬碳材料的制备过程示意图
图2  预氧化PLA、PHC-600、PHC-700、和PHC-800的SEM照片以及PHC-600、PHC-700和PHC-800的EDS谱
图3  预氧化PLA、PHC-600、PHC-700以及PHC-800的HRTEM图
图4  硬碳PHC-X的N2吸脱附等温线和孔径分布曲线
Sample descriptionTotal specific surface area / m2·g-1Micropore specific surface area / m2·g-1

Total pore volume

/ cm3·g-1

Microporous pore volume

/ cm3·g-1

Preoxidized PLA6.25000.010
PHC-60043.931.420.0010.088
PHC-70034.1811.620.0060.072
PHC-80039.9013.060.0070.072
表1  硬碳PHC-X的孔结构参数
图5  硬碳PHC-X的XRD谱及Raman光谱
图6  PHC-X的XPS全谱、PHC-600的P2p光谱、PHC-700的P2p光谱以及PHC-800的P2p光谱

Sample

Element

C / %O / %P / %
Preoxidized PLA85.3012.522.18
PHC-60086.7811.881.34
PHC-70088.4610.600.94
PHC-80090.029.600.38
表2  硬碳PHC-X的元素构成
图7  PHC-600、PHC-700、PHC-800和PHC-X第二圈扫速为0.1 mV/s的CV曲线
图8  在100 mA/g下硬碳PHC-600的GCD图、在100 mA/g下PHC-700的GCD图、在100 mA/g下PHC-800的GCD图、在0.05-1.0 A/g下PHC-700的GCD图、在PHC-X的倍率性能图和PHC-X的循环寿命图
图9  PHC-X循环前和循环后的Nyquist曲线
1 Wang H F. Preparation of petroleum coke based activated carbon and its application in supercapacitors [D]. Changsha: Hunan University, 2015
1 王华飞. 石油焦基活性炭的制备及其在超级电容器方面的应用 [D]. 长沙: 湖南大学, 2015
2 Le V Q, Do T H, Retamal J R D, et al. Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor [J]. Nano Energy, 2019, 56: 9
3 Chen Y, Cai K, Liu C, et al. High-performance and breathable polypyrrole coated air-laid paper for flexible all-solid-state supercapacitors [J]. Adv. Energy Mater., 2017, 7(21): 1701247
4 Mukherjee R, Krishnan R, Lu T M, et al. Nanostructured electrodes for high-power lithium ion batteries [J]. Nano Energy, 2012, 1(4): 33
5 Li J, Du Z, Ruther R E, et al. Toward low-cost, high-energy density, and high-power density lithium-ion batteries [J]. JOM, 2017, 69(9): 96
6 Chen X, Sun W, Wang Y. Covalent organic frameworks for next‐generation batteries [J]. Chem. Electro. Chem., 2020, 7(19): 26
7 Zhou D, Cui Y, Han B. Graphene-based hybrid materials and their applications in energy storage and conversion [J]. Chin. Sci. Bulletin, 2012, 57(23): 94
8 Moradi B, Botte G G. Recycling of graphite anodes for the next generation of lithium ion batteries [J]. J. Appl. Electrochem., 2015, 46(2): 48
9 Asenbauer J, Eisenmann T, Kuenzel M, et al. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites [J]. Sustain. Energy Fuels, 2020, 4(11): 416
10 Wu P, Shao G, Guo C, et al. Long cycle life, low self-discharge carbon anode for Li-ion batteries with pores and dual-doping [J]. J. Alloys Compd., 2019, 802: 7
11 Song D, Wang S, Liu R, et al. Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material [J]. Appl. Surf. Sci., 2019, 478: 8
12 Bhattacharya P, Lee J H, Kar K K, et al. Carambola-shaped SnO2 wrapped in carbon nanotube network for high volumetric capacity and improved rate and cycle stability of lithium ion battery [J]. Chem. Eng. J., 2019, 369: 31
13 Ali G, Patil S A, Mehboob S, et al. Determination of lithium diffusion coefficient and reaction mechanism into ultra-small nanocrystalline SnO2 particles [J]. J. Power Sources, 2019, 419: 36
14 Bai J, Wu H, Wang S, et al. Synthesis of CoSe2-SnSe2 nanocube-coated nitrogen-doped carbon (NC) as anode for lithium and sodium ion batteries [J]. Appl. Surf. Sci., 2019, 488: 21
15 Hong Y, Mao W, Hu Q, et al. Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes [J]. J. Power Sources, 2019, 428: 52
16 Tian Q, Zhang F, Yang L. Fabricating thin two-dimensional hollow tin dioxide/carbon nanocomposite for high-performance lithium-ion battery anode [J]. Appl. Surf. Sci., 2019, 481: 84
17 Zhao Q, Meng Y, Li J, et al. Sulfur and nitrogen dual-doped porous carbon nanosheet anode for sodium ion storage with a self-template and self-porogen method [J]. Appl. Surf. Sci., 2019, 481: 83
18 Zhang W, An X Y, Liu L Q, et al. Preparation and electrochemical properties of lignin nanoparticles/natural fiber activated carbon fiber materials [J]. Chem. Indust. Eng. Prog., 2022, 41(7): 83
18 张 伟, 安兴业, 刘利琴 等. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能 [J]. 化工进展, 2022, 41(7): 83
19 Zhang W, Zhang B, Jin H, et al. Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery [J]. Ceram. Int., 2018, 44(16): 8
20 Cheng Y, Huang J, Li J, et al. Turning waste makeup cotton to a hollow structured carbon as anode for high-performance lithium ions batteries [J]. Micro. Nano Lett., 2020, 15(15): 8
21 Wang Y, Li Y, Mao S S, et al. N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries [J]. Sustain. Energy Fuels, 2019, 3(3): 22
22 Rezvani G E, Khosravi F, Saedi A A, et al. The life cycle assessment for polylactic acid (PLA) to make it a low-carbon mater-ial [J]. Polymers, 2021, 13(11): 1854
23 Ilyas R A, Zuhri M Y M, Aisyah H A, et al. Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications [J]. Polymers, 2022, 14(1): 202
24 Ali W, Ali H, Gillani S, et al. Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review [J]. Environ. Chem. Lett., 2023, 21: 1761
25 Yu J L, Rafique J, Yu J. Study on carbonization process of electrospinning PAN Nanofibers [J]. Guangzhou Chem., 2007, (3): 8
25 于记良, Rafique J, 于 杰. 电纺PAN纳米纤维的碳化工艺研究 [J]. 广州化工, 2007, (3): 8
26 Wu Y P, Wan C R, Jiang C Y, et al. Mechanism of lithium storage in low temperature carbon [J]. Carbon, 1999, 37(12): 8
27 Kim C, Yang K S, Kojima M, et al. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries [J]. Adv. Funct., 2006, 16(18): 7
28 Li Y, Yuan Y, Bai Y, et al. Insights into the Na+ storage mechanism of phosphorus‐functionalized hard carbon as ultrahigh capacity anodes [J]. Adv. Funct., 2018, 8(18): 1
29 Shi L, Chen Y, Song H, et al. Preparation and lithium-storage performance of a novel hierarchical porous carbon from sucrose using Mg-Al layered double hydroxides as template [J]. Electrochim. Acta, 2017, 231: 61
30 Ai W, Wang X, Zou C, et al. Molecular-level design of hierarchically porous carbons codoped with nitrogen and phosphorus capable of in situ self-activation for sustainable energy systems [J]. Small, 2017, 13(8): 1602010
31 Shi S, Sun C, Yin X, et al. FeP quantum dots confined in carbon-nanotube-grafted p-doped carbon octahedra for high-rate sodium storage and full-cell applications [J]. Adv. Funct., 2020, 30(10): 1909283
32 Alvin S, Cahyadi H S, Hwang J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon [J]. Adv. Energy Mater., 2020, 10(20): 2000283
33 Piedboeuf M L C, Léonard A F, Reichenauer G, et al. How do the micropores of carbon xerogels influence their electrochemical behavior as anodes for lithium-ion batteries? [J]. Micropor. Mesopor. Mat., 2019, 275: 87
34 Hu L, Lu Y, Li X, et al. Optimization of microporous carbon structures for lithium-sulfur battery applications in carbonate-based electrolyte [J]. Small, 2017, 13(11): 1063533
35 Ou J, Yang L, Zhang Y, et al. Fabrication of porous nitrogen-doped carbon materials as anodes for high-performance lithium ion batteries [J]. Chin. J. Chem., 2015, 33(11): 302
36 Li D, Liu X, Zhou H. The size-dependent phase transition of LiFePO4 particles during charging and discharging in lithium-ion batteries [J]. Energy Technol., 2014, 2(6): 7
[1] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[2] 周键, 夏蒙玥, 张航飞, 刘俏君. DA-PEI共沉积表面改性阳离子交换膜的制备[J]. 材料研究学报, 2024, 38(8): 585-592.
[3] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.
[4] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[5] 翁鑫, 李琦琪, 杨桂芳, 吕源财, 刘以凡, 刘明华. 铁负载纤维素/单宁吸附剂的制备及其对氟硅诺酮类抗生素的吸附性能[J]. 材料研究学报, 2024, 38(2): 92-104.
[6] 李宇轩, 杜永刚, 苏俊铭, 王智, 朱永飞. 超疏水苯并噁嗪-ZnO改性海绵的制备及其油水分离性能[J]. 材料研究学报, 2024, 38(1): 71-80.
[7] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[8] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[9] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[10] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[11] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] 赵超锋, 郑小燕, 李凯瑞, 贾世奎, 张明, 黎业生, 吴子平. 碳纳米管膜表面金属化用于高电流输出柔性锂离子电池[J]. 材料研究学报, 2022, 36(5): 373-380.
[13] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[14] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[15] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.