|
|
聚乳酸基硬碳的制备及其电化学性能研究 |
敖霜霜, 徐嘉晨, 王宇作, 阮殿波( ), 乔志军( ) |
宁波大学 先进储能技术与装备研究院 宁波 315211 |
|
Preparation and Electrochemical Properties of Discarded Polylactic Acid Hard Carbon |
AO Shuangshuang, XU Jiachen, WANG Yuzuo, RUAN Dianbo( ), QIAO Zhijun( ) |
Institute of Advanced Energy Storage Technology and Equipment, NingBo University, NingBo 315211, China |
引用本文:
敖霜霜, 徐嘉晨, 王宇作, 阮殿波, 乔志军. 聚乳酸基硬碳的制备及其电化学性能研究[J]. 材料研究学报, 2024, 38(11): 811-820.
Shuangshuang AO,
Jiachen XU,
Yuzuo WANG,
Dianbo RUAN,
Zhijun QIAO.
Preparation and Electrochemical Properties of Discarded Polylactic Acid Hard Carbon[J]. Chinese Journal of Materials Research, 2024, 38(11): 811-820.
1 |
Wang H F. Preparation of petroleum coke based activated carbon and its application in supercapacitors [D]. Changsha: Hunan University, 2015
|
1 |
王华飞. 石油焦基活性炭的制备及其在超级电容器方面的应用 [D]. 长沙: 湖南大学, 2015
|
2 |
Le V Q, Do T H, Retamal J R D, et al. Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor [J]. Nano Energy, 2019, 56: 9
|
3 |
Chen Y, Cai K, Liu C, et al. High-performance and breathable polypyrrole coated air-laid paper for flexible all-solid-state supercapacitors [J]. Adv. Energy Mater., 2017, 7(21): 1701247
|
4 |
Mukherjee R, Krishnan R, Lu T M, et al. Nanostructured electrodes for high-power lithium ion batteries [J]. Nano Energy, 2012, 1(4): 33
|
5 |
Li J, Du Z, Ruther R E, et al. Toward low-cost, high-energy density, and high-power density lithium-ion batteries [J]. JOM, 2017, 69(9): 96
|
6 |
Chen X, Sun W, Wang Y. Covalent organic frameworks for next‐generation batteries [J]. Chem. Electro. Chem., 2020, 7(19): 26
|
7 |
Zhou D, Cui Y, Han B. Graphene-based hybrid materials and their applications in energy storage and conversion [J]. Chin. Sci. Bulletin, 2012, 57(23): 94
|
8 |
Moradi B, Botte G G. Recycling of graphite anodes for the next generation of lithium ion batteries [J]. J. Appl. Electrochem., 2015, 46(2): 48
|
9 |
Asenbauer J, Eisenmann T, Kuenzel M, et al. The success story of graphite as a lithium-ion anode material-fundamentals, remaining challenges, and recent developments including silicon (oxide) composites [J]. Sustain. Energy Fuels, 2020, 4(11): 416
|
10 |
Wu P, Shao G, Guo C, et al. Long cycle life, low self-discharge carbon anode for Li-ion batteries with pores and dual-doping [J]. J. Alloys Compd., 2019, 802: 7
|
11 |
Song D, Wang S, Liu R, et al. Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material [J]. Appl. Surf. Sci., 2019, 478: 8
|
12 |
Bhattacharya P, Lee J H, Kar K K, et al. Carambola-shaped SnO2 wrapped in carbon nanotube network for high volumetric capacity and improved rate and cycle stability of lithium ion battery [J]. Chem. Eng. J., 2019, 369: 31
|
13 |
Ali G, Patil S A, Mehboob S, et al. Determination of lithium diffusion coefficient and reaction mechanism into ultra-small nanocrystalline SnO2 particles [J]. J. Power Sources, 2019, 419: 36
|
14 |
Bai J, Wu H, Wang S, et al. Synthesis of CoSe2-SnSe2 nanocube-coated nitrogen-doped carbon (NC) as anode for lithium and sodium ion batteries [J]. Appl. Surf. Sci., 2019, 488: 21
|
15 |
Hong Y, Mao W, Hu Q, et al. Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon framework for high-performance lithium-ion battery anodes [J]. J. Power Sources, 2019, 428: 52
|
16 |
Tian Q, Zhang F, Yang L. Fabricating thin two-dimensional hollow tin dioxide/carbon nanocomposite for high-performance lithium-ion battery anode [J]. Appl. Surf. Sci., 2019, 481: 84
|
17 |
Zhao Q, Meng Y, Li J, et al. Sulfur and nitrogen dual-doped porous carbon nanosheet anode for sodium ion storage with a self-template and self-porogen method [J]. Appl. Surf. Sci., 2019, 481: 83
|
18 |
Zhang W, An X Y, Liu L Q, et al. Preparation and electrochemical properties of lignin nanoparticles/natural fiber activated carbon fiber materials [J]. Chem. Indust. Eng. Prog., 2022, 41(7): 83
|
18 |
张 伟, 安兴业, 刘利琴 等. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能 [J]. 化工进展, 2022, 41(7): 83
|
19 |
Zhang W, Zhang B, Jin H, et al. Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery [J]. Ceram. Int., 2018, 44(16): 8
|
20 |
Cheng Y, Huang J, Li J, et al. Turning waste makeup cotton to a hollow structured carbon as anode for high-performance lithium ions batteries [J]. Micro. Nano Lett., 2020, 15(15): 8
|
21 |
Wang Y, Li Y, Mao S S, et al. N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries [J]. Sustain. Energy Fuels, 2019, 3(3): 22
|
22 |
Rezvani G E, Khosravi F, Saedi A A, et al. The life cycle assessment for polylactic acid (PLA) to make it a low-carbon mater-ial [J]. Polymers, 2021, 13(11): 1854
|
23 |
Ilyas R A, Zuhri M Y M, Aisyah H A, et al. Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications [J]. Polymers, 2022, 14(1): 202
|
24 |
Ali W, Ali H, Gillani S, et al. Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: a review [J]. Environ. Chem. Lett., 2023, 21: 1761
|
25 |
Yu J L, Rafique J, Yu J. Study on carbonization process of electrospinning PAN Nanofibers [J]. Guangzhou Chem., 2007, (3): 8
|
25 |
于记良, Rafique J, 于 杰. 电纺PAN纳米纤维的碳化工艺研究 [J]. 广州化工, 2007, (3): 8
|
26 |
Wu Y P, Wan C R, Jiang C Y, et al. Mechanism of lithium storage in low temperature carbon [J]. Carbon, 1999, 37(12): 8
|
27 |
Kim C, Yang K S, Kojima M, et al. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries [J]. Adv. Funct., 2006, 16(18): 7
|
28 |
Li Y, Yuan Y, Bai Y, et al. Insights into the Na+ storage mechanism of phosphorus‐functionalized hard carbon as ultrahigh capacity anodes [J]. Adv. Funct., 2018, 8(18): 1
|
29 |
Shi L, Chen Y, Song H, et al. Preparation and lithium-storage performance of a novel hierarchical porous carbon from sucrose using Mg-Al layered double hydroxides as template [J]. Electrochim. Acta, 2017, 231: 61
|
30 |
Ai W, Wang X, Zou C, et al. Molecular-level design of hierarchically porous carbons codoped with nitrogen and phosphorus capable of in situ self-activation for sustainable energy systems [J]. Small, 2017, 13(8): 1602010
|
31 |
Shi S, Sun C, Yin X, et al. FeP quantum dots confined in carbon-nanotube-grafted p-doped carbon octahedra for high-rate sodium storage and full-cell applications [J]. Adv. Funct., 2020, 30(10): 1909283
|
32 |
Alvin S, Cahyadi H S, Hwang J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon [J]. Adv. Energy Mater., 2020, 10(20): 2000283
|
33 |
Piedboeuf M L C, Léonard A F, Reichenauer G, et al. How do the micropores of carbon xerogels influence their electrochemical behavior as anodes for lithium-ion batteries? [J]. Micropor. Mesopor. Mat., 2019, 275: 87
|
34 |
Hu L, Lu Y, Li X, et al. Optimization of microporous carbon structures for lithium-sulfur battery applications in carbonate-based electrolyte [J]. Small, 2017, 13(11): 1063533
|
35 |
Ou J, Yang L, Zhang Y, et al. Fabrication of porous nitrogen-doped carbon materials as anodes for high-performance lithium ion batteries [J]. Chin. J. Chem., 2015, 33(11): 302
|
36 |
Li D, Liu X, Zhou H. The size-dependent phase transition of LiFePO4 particles during charging and discharging in lithium-ion batteries [J]. Energy Technol., 2014, 2(6): 7
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|