Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (11): 801-810    DOI: 10.11901/1005.3093.2023.577
  研究论文 本期目录 | 过刊浏览 |
316L钢表面低活性Fe-Al涂层的制备
陈继弘1,3, 王永利2,3(), 熊良银2,3, 宋立新1
1 沈阳化工大学材料科学与工程学院 沈阳 110142
2 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
3 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Preparation of Low Activity Fe-Al Coating on 316L Steel Surface
CHEN Jihong1,3, WANG Yongli2,3(), XIONG Liangyin2,3, SONG Lixin1
1 College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

陈继弘, 王永利, 熊良银, 宋立新. 316L钢表面低活性Fe-Al涂层的制备[J]. 材料研究学报, 2024, 38(11): 801-810.
Jihong CHEN, Yongli WANG, Liangyin XIONG, Lixin SONG. Preparation of Low Activity Fe-Al Coating on 316L Steel Surface[J]. Chinese Journal of Materials Research, 2024, 38(11): 801-810.

全文: PDF(12150 KB)   HTML
摘要: 

用粉末包埋法在316L不锈钢样品和钢管内表面制备Fe-Al涂层,使用扫描电镜(SEM)、能谱分析(EDS)和X射线衍射仪(XRD)等手段表征其组织形貌、成分分布和物相组成并比较316L不锈钢平面涂层和管内壁涂层生长的差异,研究了渗铝剂配比、渗铝温度和渗铝时间对其组织结构和物相成分的影响。结果表明,在700~800℃保温渗铝6 h、Fe-Al粉质量分数为75%的涂层其生长效率最高,制备出的涂层均匀平整,致密性良好。在此温度区间,渗铝温度对涂层的物相组成影响不大。这种Fe-Al涂层具有双层结构,外层富铝层主要由FeAl韧性相组成,内层元素扩散层由Fe3Al相组成。随着渗铝时间的增加元素扩散增强,使涂层表面的致密性提高并在富Al层与扩散层界面区域出现尺寸约1~2 μm的孔洞。渗铝时间越长,孔洞数量越多。在700~800℃渗铝,在316L不锈钢管内壁制备的Fe-Al涂层与316L不锈钢基体界面结合紧密且没有孔洞。在曲面上涂层晶核的体积比在平面上的涂层小,在曲面上形核的几率高、形核更快。在渗铝工艺参数相同的条件下,在不锈钢管内壁生长的涂层厚度约为在不锈钢平面生长的涂层厚度的1.1~2.1倍。

关键词 材料表面与界面Fe-Al涂层粉末包埋法316L钢形核效能管内壁涂层    
Abstract

The Fe-Al coatings were prepared on the surface of 316L stainless steel plate and the inner surface of 316L tubes by pack cementation method. The effect of aluminizing agent ratio, temperature and time on the microstructure and phase composition of the Fe-Al coatings were investigated by Scanning electron microscopy (SEM), energy spectrum analysis (EDS) and X-ray diffractometer (XRD). The growth rate of coatings was measured for the planar samples and the inner wall of the tubes. The results showed that uniform Fe-Al coatings with good coherence to the substrate were obtained after aluminizing at 700~800oC for 6 h. The higher growth rate of coating was achieved in the aluminizing agent with Fe-Al powder content of 75%. The aluminizing temperature has little effect on the phase compositions of the coatings obtained in the range of 700~800oC. The prepared Fe-Al coating show double-layered structure, with the outer Al-rich layer mainly composed of FeAl toughness phase, and the inner elemental diffusion layer mainly composed of Fe3Al phase. With the increasing time, the element diffusion is enhanced in the coating, which leads to dense and smooth coating surface. On the other hand, due to the enhanced element diffusion, some pores with 1-2μm diameter appears in the region near the interface between Al-rich layer and diffusion layer and the number of pores is increasing with time. The Fe-Al coating without pores at the interface of the 316L substrate was prepared on inner surface of 316L stainless steel tubes in the temperature range of 700~800oC. After the same aluminizing process, the thickness of the coating grown on the inner tube surface is about 1.1~2.1 times of that on the plate surface. It can be explained by the smaller nuclei volume of coating nucleated on a curved surface than that on a flat surface, which result in the higher nucleation efficiency and faster growth rate of coating on the inner surface of tubes.

Key wordssurface and interface in the materials    Fe-Al coating    pack cementation method    316L steel    nucleation efficiency    pipe wall coating
收稿日期: 2023-12-04     
ZTFLH:  O484  
基金资助:中核集团领创科研项目
通讯作者: 王永利,副研究员,wangyongli@imr.ac.cn,研究方向为核燃料包壳涂层
Corresponding author: WANG Yongli, Tel: 15909820506, E-mail: wangyongli@imr.ac.cn
作者简介: 陈继弘,男,1997年生,硕士
ElementFeCrNiMoMnTotal
%68.9317.2110.302.331.23100
表1  316L不锈钢基材的化学成分(质量分数,%)
Fe-AlAl2O3NH4Cl
P165323
P275223
P385123
表2  三种渗铝剂配比组成(质量分数,%)
图1  不同渗铝剂配比的Fe-Al涂层的表面和截面形貌
图2  不同渗铝剂配比的Fe-Al涂层的XRD谱
图3  不同深度的能谱选取点
SpectrogramAlCrFeNi
135.187.0153.384.44
210.3121.2255.6412.83
表3  谱1和谱2的EDS结果
图4  在不同温度渗铝的Fe-Al涂层的表面形貌
图5  在不同温度渗铝6 h的Fe-Al涂层的截面形貌BSE图片和能谱分析
图6  不同温度渗铝Fe-Al涂层的XRD谱
Temperature / oC700750800
Diffusion coefficient / m2·s-14.63 × 10-177.60 × 10-162.40 × 10-15
表4  不同温度的Al原子扩散系数(D)
图7  渗铝不同时间Fe-Al涂层的表面形貌
图8  在800℃渗铝不同时间Fe-Al涂层的截面形貌的BSE图片和能谱分析
图9  不同渗铝时间Fe-Al涂层的XRD谱
图10  在不同温度渗铝不同时间316L管内壁的Fe-Al涂层的截面形貌的BSE图片
图11  316L不锈钢平面试样和管试样Fe-Al涂层的厚度与温度和时间的拟合
图12  在不同形状的固体杂质表面形核的晶核体积
1 Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61(3): 735
2 Gi K, Sano F, Akimoto K, et al. Potential contribution of fusion power generation to low-carbon development under the Paris Agreement and associated uncertainties [J]. Energy Strat. Rev., 2020, 27: 1
3 Luo L M, Liu Y L, Liu D G, et al. Preparation technologies and performance studies of tritium permeation barriers for future nuclear fusion reactors [J]. Surf. Coat. Technol., 2020, 403: 1
4 Ushids H, Katayama K, Matsuura H, et al. Tritium permeation behavior through pyrolytic carbon in tritium production using high-temperature gas-cooled reactor for fusion reactors [J]. Nucl. Mater. Energy., 2016, 9:524
5 Zhang G K, Xiang X, Yang F L, et al. Current research and development activities on tritium permeation barriers for fusion reactors in China [J]. Nucl. Chem. Radiochem., 2015, 37(5): 310
5 张桂凯, 向 鑫, 杨飞龙 等. 我国聚变堆结构材料表面阻氚涂层的研究进展 [J]. 核化学与放射化学, 2015, 37(5): 310
doi: 10.7538/hhx.2015.37.05.0310
6 Chikada T, Tanaka T, Yuyama K, et al. Crystallization and deuterium permeation behaviors of yttrium oxide coating prepared by metal organic decomposition [J]. Nucl. Mater. Energy., 2016, 9: 529
7 Mochizuki J, Horikoshi S, Oya Y, et al. Deuterium permeation behavior of tritium permeation barrier coating containing carbide nanoparticles [J]. Fusion Eng. Des., 2017, 124: 1073
8 Yang F, Xiang X, Lu G, et al. Tritium permeation characterization of Al2O3/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers [J]. J. Nucl. Mater., 2016, 478: 144
9 Wu Y. Design status and development strategy of China liquid lithium-lead blankets and related material technology [J]. J. Nucl. Mater., 2007, 367-370: 1410
10 Zhan Q, Yang H G, Zhao W W, et al. Grazing X-ray diffraction of surface oxide films on Fe-Al/ Al2O3 composite coating [J]. Nucl. Energy Sci. Technol., 2012, 46(S1): 517
10 占 勤, 杨洪广, 赵崴巍 等. Fe-Al/ Al2O3涂层表面氧化膜的掠入射X射线衍射研究 [J]. 原子能科学技术, 2012, 46(S1): 517
11 Zheng G, Carpenter D, Dolan K, et al. Experimental investigation of alumina coating as tritium permeation barrier for molten salt nuclear reactors [J]. Nucl. Eng. Des., 2019, 353: 1
12 Xiang X, Zhang G K, Wang X L, et al. Review on preparation techniques of FeAl/Al2O3 composite tritium permeation barriers [J]. Rare Met. Mater. Eng., 2016, 45(2): 522
13 Zhang H, Zhou H, Li N, et al. Effect of ce on microstruvture and properties of hot dipaluminized tritium permeation barrier [J]. Acta Metall. Sin., 2011, 47(12): 1527
14 Huang J, Xie H, Luo L M, et al. Preparation and properties of FeAl/Al2O3 composite tritium permeation barrier coating on surface of 316L stainless steel [J]. Surf. Coat. Technol., 2020, 383: 1
15 Yuan X M, Yang H G, Zhao W W, et al. Study on pack cementation process for preparation of low activity pack aluminizing layer on RAFM steel [J]. Mater. Rep., 2015, 29(S1): 66
15 袁晓明, 杨洪广, 赵崴巍 等. RAFM钢表面粉末包埋法制备低活性渗铝层工艺研究 [J]. 材料导报, 2015, 29(S1): 66
16 Dai Y N. Binary Alloy Phase Diagrams [M]. Beijing: Science Press, 2009
16 戴永年. 二元合金相图集 [M]. 北京: 科学出版社, 2009
17 Yang Y, Zhang F, He J, et al. Microstructure, growth kinetics and mechanical properties of interface layer for roll bonded aluminum-steel clad sheet annealed under argon gas protection [J]. Vacuum., 2018, 151: 1
18 Chen W Q, La P Q, Luo G, et al. Review of preparation and corrosion resistance of Fe-Al coatings in molten salt [J]. Foundry Technol., 2022, 43(11): 948
18 陈维铅, 喇培清, 罗 刚 等. Fe-Al涂层制备及耐熔盐腐蚀性研究 [J]. 铸造技术, 2022, 43(11): 948
19 Wang T, Pu J, Bo C, et al. Sol-gel prepared Al2O3 coatings for the application as tritium permeation barrier [J]. Fusion Eng. Des., 2010, 85(7): 1068
20 Li L F, Shen J N, Li M C, et al. Pack aluminizing process and characterization of aluminizen layer on stainless steels [J]. Corros. Sci. Prot. Technol., 2004, (2): 79
20 李凌峰, 沈嘉年, 李谋成 等. 不锈钢表面粉末包埋渗铝过程及渗铝层表征 [J]. 腐蚀科学与防护技术, 2004, (2): 79
21 Huang Z J, Jiang Z Q, Dong W B, et al. High-temperature corrosion resistance of composite coatings prepared by microarc oxidation combined with pack cementation aluminum [J]. Mater. Eng., 2018, 46(1): 44
21 黄祖江, 蒋智秋, 董婉冰 等. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能 [J]. 材料工程, 2018, 46(1): 44
doi: 10.11868/j.issn.1001-4381.2016.000617
22 Xiang Z D, Datta P K. Formation of aluminide coatings on low alloy steels at 650 degrees C by pack cementation process [J]. Mater. Sci. Technol., 2004, 20(10): 1297
23 Choi W J, Lee H, Park C W, et al. High temperature oxidation behavior of molybdenum borides by silicon pack cementation process [J]. Int. J. Refract. Met. Hard Mater., 2021, 100: 1
24 Nouri S, Azadeh M. Microstructural investigation of the coatings prepared by simultsneous aluminizing and siliconizing process on gamma-TiAl [J]. J. Min. Metall. Sect. B-Metall., 2019, 55(2): 217
25 Hu Y, Xiang Z. Corrosion resistance and application of martensitic stainless steels with an external Cr-N coating layer formed by pack cementation process [J]. Surf. Technol., 2019, 48(6): 282
26 Bateni M R, Shaw S, Wei P, et al. Deposition of Fe-Al intermetallic coatings on solid oxide fuel cell (SOFC) interconnects by pack cementation [J]. Mater. Manuf. Processes., 2009, 24(6): 626
27 Yang H G, Zhan Q, Zhao W W, et al. Study of an iron-aluminide and alumina tritium barrier coating [J]. J. Nucl. Mater., 2011, 417(1): 1237
28 Xie H, Yu L X, Ma R N, et al. A study of pack aluminizing technology on the surface of GCr15 steel [J]. J. Hebei Univ. Technol., 2017, 46(6): 53
28 谢 欢, 于立新, 马瑞娜 等. GCr15钢表面粉末包埋渗铝工艺研究 [J]. 河北工业大学学报, 2017, 46(6): 53
29 Rohr V, Schütze M, Fortuna E, et al. Development of novel diffusion coatings for 9-12%Cr ferritic-martensitic steels [J]. Mater. Corros., 2005, 56(12): 874
30 Bates B L, Wang Y Q, Zhang Y, et al. Formation and oxidation performance of low-temperature pack aluminide coatings on ferritic-martensitic steels [J]. Surf. Coat. Technol., 2009, 204(6): 766
31 Ke S R, Wang J, Zhu C Y, et al. On the selection of halide activators for the formation of hybrid Ni-aluminide/Ni coatings on creep resistant ferritic steels by low temperature pack cementation process [J]. Mater. Chem. Phys., 2015, 162: 1
32 Forcey K S, Ross D K, Simpson J C B, et al. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications [J]. J. Nucl. Mater., 1988, 160(2): 117
33 Perujo A, Forcey K S. Tritium permeation barriers for fusion technology [J]. FFusion Eng. Des., 1995, 28: 252
34 Yuan X M, Yang H G, Zhao W W, et al. The pack-cementation process of iron-aluminide coating on china low activation martensitic and 316L austenitic stainless steel [J]. Fusion Sci. Technol., 2011, 60(3): 1065
35 Zhang J X, Xu X Y, Song J F, et al. Research progress of pack cementation aluminizing [J]. Hot Work. Technol., 2018, 47(4): 22
35 张冀翔, 徐修炎, 宋健斐 等. 粉末包埋渗铝研究进展 [J]. 热加工工艺, 2018, 47(4): 22
36 Majumdar S, Paul B, Kain V, et al. Formation of Al2O3/Fe-Al layers on SS 316 surface by pack aluminizing and heat treatment[J]. Mater. Chem. Phys., 2017, 190: 31
37 Li N, Chen Y, Chen X, et al. Preparation method and diffusion mechanism of Fe-Al coating on Q235 low carbon steel by pack aluminizing [J]. Chin. J. Mater. Res., 2021, 35(8): 572
doi: 10.11901/1005.3093.2020.449
38 Bahadur A, Sharma T L, Parida N, et al. Structure-property correlation in Al-diffusion coated steels [J]. J. Mater. Sci., 1993, 28(19): 5375
39 Yener T. Low temperature aluminising of Fe-Cr-Ni super alloy by pack cementation [J]. Vacuum, 2019, 162:114
40 Rastkar A R, Rezvani N. The effects of processing time on the microstructure and composition of plasma pack-aluminized and oxidized surface layers on low carbon steel [J]. Metall. Mater. Trans. A, 2015, 46A(9) : 4132
41 Xiang Z D, Datta P K. Low temperature aluminisation of alloy steels by pack cementation process [J]. Mater. Sci. Technol., 2006, 22(10): 1177
42 Lin T, Shao H P, Zhang W W. Preparation of Oxidation Resistance Coating of Silicide by Pack Cementation [M]. France: Atlantis Press, 2015
43 Wang X, Fan Y Z, Zhao X, et al. Process and high-temperature oxidation resistance of pack-aluminized layers on cast iron [J]. Metals., 2019, 9(6): 1
[1] 黄迪, 牛云松, 李帅, 董志宏, 鲍泽斌, 朱圣龙. 四方相氧化钇稳定氧化锆热障涂层的热循环和热冲击性能及其失效机理[J]. 材料研究学报, 2024, 38(9): 691-700.
[2] 李沅沅, 梁健, 熊自柳, 苗斌, 田秀刚, 齐建军, 郑士建. 新型热镀锌双相钢的合金成分对界面层和镀层结构的影响[J]. 材料研究学报, 2024, 38(6): 446-452.
[3] 张甲, 高明浩, 栾胜家, 徐娜, 常辉, 邓予婷, 侯万良, 常新春. 喷涂粉末对CoNiCrAlY涂层组织和性能的影响[J]. 材料研究学报, 2024, 38(5): 347-355.
[4] 马飞, 王闯, 郭武明, 史祥东, 孙建颖, 庞刚. 碳含量对CrN:a-C多相复合涂层摩擦学性能的影响[J]. 材料研究学报, 2024, 38(4): 297-307.
[5] 陈真勇, 魏欣欣, 徐妍婷, 张波, 马秀良. 电化学渗氮对不锈钢表面结构的影响[J]. 材料研究学报, 2024, 38(3): 161-167.
[6] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[7] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[10] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[11] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[12] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[13] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[14] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[15] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.