|
|
316L钢表面低活性Fe-Al涂层的制备 |
陈继弘1,3, 王永利2,3( ), 熊良银2,3, 宋立新1 |
1 沈阳化工大学材料科学与工程学院 沈阳 110142 2 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 3 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Preparation of Low Activity Fe-Al Coating on 316L Steel Surface |
CHEN Jihong1,3, WANG Yongli2,3( ), XIONG Liangyin2,3, SONG Lixin1 |
1 College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
陈继弘, 王永利, 熊良银, 宋立新. 316L钢表面低活性Fe-Al涂层的制备[J]. 材料研究学报, 2024, 38(11): 801-810.
Jihong CHEN,
Yongli WANG,
Liangyin XIONG,
Lixin SONG.
Preparation of Low Activity Fe-Al Coating on 316L Steel Surface[J]. Chinese Journal of Materials Research, 2024, 38(11): 801-810.
1 |
Zinkle S J, Was G S. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61(3): 735
|
2 |
Gi K, Sano F, Akimoto K, et al. Potential contribution of fusion power generation to low-carbon development under the Paris Agreement and associated uncertainties [J]. Energy Strat. Rev., 2020, 27: 1
|
3 |
Luo L M, Liu Y L, Liu D G, et al. Preparation technologies and performance studies of tritium permeation barriers for future nuclear fusion reactors [J]. Surf. Coat. Technol., 2020, 403: 1
|
4 |
Ushids H, Katayama K, Matsuura H, et al. Tritium permeation behavior through pyrolytic carbon in tritium production using high-temperature gas-cooled reactor for fusion reactors [J]. Nucl. Mater. Energy., 2016, 9:524
|
5 |
Zhang G K, Xiang X, Yang F L, et al. Current research and development activities on tritium permeation barriers for fusion reactors in China [J]. Nucl. Chem. Radiochem., 2015, 37(5): 310
|
5 |
张桂凯, 向 鑫, 杨飞龙 等. 我国聚变堆结构材料表面阻氚涂层的研究进展 [J]. 核化学与放射化学, 2015, 37(5): 310
doi: 10.7538/hhx.2015.37.05.0310
|
6 |
Chikada T, Tanaka T, Yuyama K, et al. Crystallization and deuterium permeation behaviors of yttrium oxide coating prepared by metal organic decomposition [J]. Nucl. Mater. Energy., 2016, 9: 529
|
7 |
Mochizuki J, Horikoshi S, Oya Y, et al. Deuterium permeation behavior of tritium permeation barrier coating containing carbide nanoparticles [J]. Fusion Eng. Des., 2017, 124: 1073
|
8 |
Yang F, Xiang X, Lu G, et al. Tritium permeation characterization of Al2O3/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers [J]. J. Nucl. Mater., 2016, 478: 144
|
9 |
Wu Y. Design status and development strategy of China liquid lithium-lead blankets and related material technology [J]. J. Nucl. Mater., 2007, 367-370: 1410
|
10 |
Zhan Q, Yang H G, Zhao W W, et al. Grazing X-ray diffraction of surface oxide films on Fe-Al/ Al2O3 composite coating [J]. Nucl. Energy Sci. Technol., 2012, 46(S1): 517
|
10 |
占 勤, 杨洪广, 赵崴巍 等. Fe-Al/ Al2O3涂层表面氧化膜的掠入射X射线衍射研究 [J]. 原子能科学技术, 2012, 46(S1): 517
|
11 |
Zheng G, Carpenter D, Dolan K, et al. Experimental investigation of alumina coating as tritium permeation barrier for molten salt nuclear reactors [J]. Nucl. Eng. Des., 2019, 353: 1
|
12 |
Xiang X, Zhang G K, Wang X L, et al. Review on preparation techniques of FeAl/Al2O3 composite tritium permeation barriers [J]. Rare Met. Mater. Eng., 2016, 45(2): 522
|
13 |
Zhang H, Zhou H, Li N, et al. Effect of ce on microstruvture and properties of hot dipaluminized tritium permeation barrier [J]. Acta Metall. Sin., 2011, 47(12): 1527
|
14 |
Huang J, Xie H, Luo L M, et al. Preparation and properties of FeAl/Al2O3 composite tritium permeation barrier coating on surface of 316L stainless steel [J]. Surf. Coat. Technol., 2020, 383: 1
|
15 |
Yuan X M, Yang H G, Zhao W W, et al. Study on pack cementation process for preparation of low activity pack aluminizing layer on RAFM steel [J]. Mater. Rep., 2015, 29(S1): 66
|
15 |
袁晓明, 杨洪广, 赵崴巍 等. RAFM钢表面粉末包埋法制备低活性渗铝层工艺研究 [J]. 材料导报, 2015, 29(S1): 66
|
16 |
Dai Y N. Binary Alloy Phase Diagrams [M]. Beijing: Science Press, 2009
|
16 |
戴永年. 二元合金相图集 [M]. 北京: 科学出版社, 2009
|
17 |
Yang Y, Zhang F, He J, et al. Microstructure, growth kinetics and mechanical properties of interface layer for roll bonded aluminum-steel clad sheet annealed under argon gas protection [J]. Vacuum., 2018, 151: 1
|
18 |
Chen W Q, La P Q, Luo G, et al. Review of preparation and corrosion resistance of Fe-Al coatings in molten salt [J]. Foundry Technol., 2022, 43(11): 948
|
18 |
陈维铅, 喇培清, 罗 刚 等. Fe-Al涂层制备及耐熔盐腐蚀性研究 [J]. 铸造技术, 2022, 43(11): 948
|
19 |
Wang T, Pu J, Bo C, et al. Sol-gel prepared Al2O3 coatings for the application as tritium permeation barrier [J]. Fusion Eng. Des., 2010, 85(7): 1068
|
20 |
Li L F, Shen J N, Li M C, et al. Pack aluminizing process and characterization of aluminizen layer on stainless steels [J]. Corros. Sci. Prot. Technol., 2004, (2): 79
|
20 |
李凌峰, 沈嘉年, 李谋成 等. 不锈钢表面粉末包埋渗铝过程及渗铝层表征 [J]. 腐蚀科学与防护技术, 2004, (2): 79
|
21 |
Huang Z J, Jiang Z Q, Dong W B, et al. High-temperature corrosion resistance of composite coatings prepared by microarc oxidation combined with pack cementation aluminum [J]. Mater. Eng., 2018, 46(1): 44
|
21 |
黄祖江, 蒋智秋, 董婉冰 等. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能 [J]. 材料工程, 2018, 46(1): 44
doi: 10.11868/j.issn.1001-4381.2016.000617
|
22 |
Xiang Z D, Datta P K. Formation of aluminide coatings on low alloy steels at 650 degrees C by pack cementation process [J]. Mater. Sci. Technol., 2004, 20(10): 1297
|
23 |
Choi W J, Lee H, Park C W, et al. High temperature oxidation behavior of molybdenum borides by silicon pack cementation process [J]. Int. J. Refract. Met. Hard Mater., 2021, 100: 1
|
24 |
Nouri S, Azadeh M. Microstructural investigation of the coatings prepared by simultsneous aluminizing and siliconizing process on gamma-TiAl [J]. J. Min. Metall. Sect. B-Metall., 2019, 55(2): 217
|
25 |
Hu Y, Xiang Z. Corrosion resistance and application of martensitic stainless steels with an external Cr-N coating layer formed by pack cementation process [J]. Surf. Technol., 2019, 48(6): 282
|
26 |
Bateni M R, Shaw S, Wei P, et al. Deposition of Fe-Al intermetallic coatings on solid oxide fuel cell (SOFC) interconnects by pack cementation [J]. Mater. Manuf. Processes., 2009, 24(6): 626
|
27 |
Yang H G, Zhan Q, Zhao W W, et al. Study of an iron-aluminide and alumina tritium barrier coating [J]. J. Nucl. Mater., 2011, 417(1): 1237
|
28 |
Xie H, Yu L X, Ma R N, et al. A study of pack aluminizing technology on the surface of GCr15 steel [J]. J. Hebei Univ. Technol., 2017, 46(6): 53
|
28 |
谢 欢, 于立新, 马瑞娜 等. GCr15钢表面粉末包埋渗铝工艺研究 [J]. 河北工业大学学报, 2017, 46(6): 53
|
29 |
Rohr V, Schütze M, Fortuna E, et al. Development of novel diffusion coatings for 9-12%Cr ferritic-martensitic steels [J]. Mater. Corros., 2005, 56(12): 874
|
30 |
Bates B L, Wang Y Q, Zhang Y, et al. Formation and oxidation performance of low-temperature pack aluminide coatings on ferritic-martensitic steels [J]. Surf. Coat. Technol., 2009, 204(6): 766
|
31 |
Ke S R, Wang J, Zhu C Y, et al. On the selection of halide activators for the formation of hybrid Ni-aluminide/Ni coatings on creep resistant ferritic steels by low temperature pack cementation process [J]. Mater. Chem. Phys., 2015, 162: 1
|
32 |
Forcey K S, Ross D K, Simpson J C B, et al. Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications [J]. J. Nucl. Mater., 1988, 160(2): 117
|
33 |
Perujo A, Forcey K S. Tritium permeation barriers for fusion technology [J]. FFusion Eng. Des., 1995, 28: 252
|
34 |
Yuan X M, Yang H G, Zhao W W, et al. The pack-cementation process of iron-aluminide coating on china low activation martensitic and 316L austenitic stainless steel [J]. Fusion Sci. Technol., 2011, 60(3): 1065
|
35 |
Zhang J X, Xu X Y, Song J F, et al. Research progress of pack cementation aluminizing [J]. Hot Work. Technol., 2018, 47(4): 22
|
35 |
张冀翔, 徐修炎, 宋健斐 等. 粉末包埋渗铝研究进展 [J]. 热加工工艺, 2018, 47(4): 22
|
36 |
Majumdar S, Paul B, Kain V, et al. Formation of Al2O3/Fe-Al layers on SS 316 surface by pack aluminizing and heat treatment[J]. Mater. Chem. Phys., 2017, 190: 31
|
37 |
Li N, Chen Y, Chen X, et al. Preparation method and diffusion mechanism of Fe-Al coating on Q235 low carbon steel by pack aluminizing [J]. Chin. J. Mater. Res., 2021, 35(8): 572
doi: 10.11901/1005.3093.2020.449
|
38 |
Bahadur A, Sharma T L, Parida N, et al. Structure-property correlation in Al-diffusion coated steels [J]. J. Mater. Sci., 1993, 28(19): 5375
|
39 |
Yener T. Low temperature aluminising of Fe-Cr-Ni super alloy by pack cementation [J]. Vacuum, 2019, 162:114
|
40 |
Rastkar A R, Rezvani N. The effects of processing time on the microstructure and composition of plasma pack-aluminized and oxidized surface layers on low carbon steel [J]. Metall. Mater. Trans. A, 2015, 46A(9) : 4132
|
41 |
Xiang Z D, Datta P K. Low temperature aluminisation of alloy steels by pack cementation process [J]. Mater. Sci. Technol., 2006, 22(10): 1177
|
42 |
Lin T, Shao H P, Zhang W W. Preparation of Oxidation Resistance Coating of Silicide by Pack Cementation [M]. France: Atlantis Press, 2015
|
43 |
Wang X, Fan Y Z, Zhao X, et al. Process and high-temperature oxidation resistance of pack-aluminized layers on cast iron [J]. Metals., 2019, 9(6): 1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|