材料研究学报, 2024, 38(11): 801-810 DOI: 10.11901/1005.3093.2023.577

研究论文

316L钢表面低活性Fe-Al涂层的制备

陈继弘1,3, 王永利,2,3, 熊良银2,3, 宋立新1

1 沈阳化工大学材料科学与工程学院 沈阳 110142

2 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016

3 中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016

Preparation of Low Activity Fe-Al Coating on 316L Steel Surface

CHEN Jihong1,3, WANG Yongli,2,3, XIONG Liangyin2,3, SONG Lixin1

1 College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China

2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

3 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

通讯作者: 王永利,副研究员,wangyongli@imr.ac.cn,研究方向为核燃料包壳涂层

责任编辑: 黄青

收稿日期: 2023-12-04   修回日期: 2024-05-26  

基金资助: 中核集团领创科研项目

Corresponding authors: WANG Yongli, Tel: 15909820506, E-mail:wangyongli@imr.ac.cn

Received: 2023-12-04   Revised: 2024-05-26  

Fund supported: LingChuang Research Project of China National Nuclear Corporation

作者简介 About authors

陈继弘,男,1997年生,硕士

摘要

用粉末包埋法在316L不锈钢样品和钢管内表面制备Fe-Al涂层,使用扫描电镜(SEM)、能谱分析(EDS)和X射线衍射仪(XRD)等手段表征其组织形貌、成分分布和物相组成并比较316L不锈钢平面涂层和管内壁涂层生长的差异,研究了渗铝剂配比、渗铝温度和渗铝时间对其组织结构和物相成分的影响。结果表明,在700~800℃保温渗铝6 h、Fe-Al粉质量分数为75%的涂层其生长效率最高,制备出的涂层均匀平整,致密性良好。在此温度区间,渗铝温度对涂层的物相组成影响不大。这种Fe-Al涂层具有双层结构,外层富铝层主要由FeAl韧性相组成,内层元素扩散层由Fe3Al相组成。随着渗铝时间的增加元素扩散增强,使涂层表面的致密性提高并在富Al层与扩散层界面区域出现尺寸约1~2 μm的孔洞。渗铝时间越长,孔洞数量越多。在700~800℃渗铝,在316L不锈钢管内壁制备的Fe-Al涂层与316L不锈钢基体界面结合紧密且没有孔洞。在曲面上涂层晶核的体积比在平面上的涂层小,在曲面上形核的几率高、形核更快。在渗铝工艺参数相同的条件下,在不锈钢管内壁生长的涂层厚度约为在不锈钢平面生长的涂层厚度的1.1~2.1倍。

关键词: 材料表面与界面; Fe-Al涂层; 粉末包埋法; 316L钢; 形核效能; 管内壁涂层

Abstract

The Fe-Al coatings were prepared on the surface of 316L stainless steel plate and the inner surface of 316L tubes by pack cementation method. The effect of aluminizing agent ratio, temperature and time on the microstructure and phase composition of the Fe-Al coatings were investigated by Scanning electron microscopy (SEM), energy spectrum analysis (EDS) and X-ray diffractometer (XRD). The growth rate of coatings was measured for the planar samples and the inner wall of the tubes. The results showed that uniform Fe-Al coatings with good coherence to the substrate were obtained after aluminizing at 700~800oC for 6 h. The higher growth rate of coating was achieved in the aluminizing agent with Fe-Al powder content of 75%. The aluminizing temperature has little effect on the phase compositions of the coatings obtained in the range of 700~800oC. The prepared Fe-Al coating show double-layered structure, with the outer Al-rich layer mainly composed of FeAl toughness phase, and the inner elemental diffusion layer mainly composed of Fe3Al phase. With the increasing time, the element diffusion is enhanced in the coating, which leads to dense and smooth coating surface. On the other hand, due to the enhanced element diffusion, some pores with 1-2μm diameter appears in the region near the interface between Al-rich layer and diffusion layer and the number of pores is increasing with time. The Fe-Al coating without pores at the interface of the 316L substrate was prepared on inner surface of 316L stainless steel tubes in the temperature range of 700~800oC. After the same aluminizing process, the thickness of the coating grown on the inner tube surface is about 1.1~2.1 times of that on the plate surface. It can be explained by the smaller nuclei volume of coating nucleated on a curved surface than that on a flat surface, which result in the higher nucleation efficiency and faster growth rate of coating on the inner surface of tubes.

Keywords: surface and interface in the materials; Fe-Al coating; pack cementation method; 316L steel; nucleation efficiency; pipe wall coating

PDF (12150KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈继弘, 王永利, 熊良银, 宋立新. 316L钢表面低活性Fe-Al涂层的制备[J]. 材料研究学报, 2024, 38(11): 801-810 DOI:10.11901/1005.3093.2023.577

CHEN Jihong, WANG Yongli, XIONG Liangyin, SONG Lixin. Preparation of Low Activity Fe-Al Coating on 316L Steel Surface[J]. Chinese Journal of Materials Research, 2024, 38(11): 801-810 DOI:10.11901/1005.3093.2023.577

核聚变能是一种清洁可持续能源[1~3]。但是,核聚变反应堆的主要燃料氘和氚在高温下极易扩散渗透进制造反应堆的材料中。氚具有放射性,氚渗透和流失使结构材料损伤和产生放射性污染[4~8]。因此,必须降低核聚变反应堆的氚渗透。在基体材料表面制备Fe-Al/Al2O3复合阻氚涂层,可减少氚及其同位素的渗透[9~12]。Fe-Al金属间化合物层是原位氧化的Al源,还能缓解陶瓷涂层和基底之间的热失配[13~15]

为了使阻氚性能最佳,先在基体材料表面制备均匀、致密、结合力优良的Fe-Al涂层。根据Fe-Al二元相图[16],稳定存在的金属间化合物有:富Al的FeAl3、Fe2Al5、FeAl2脆性相和富Fe的韧性相FeAl和Fe3Al。Yang等[17]对镀铝过程中可能发生的化学反应进行了热力学计算,发现Fe2Al5的吉布斯自由能最低,生成Fe-Al化合物难易的顺序可能是:Fe2Al5、FeAl3、FeAl2、FeAl。在不锈钢、镍基合金等基体材料表面制备Fe-Al化合物涂层的方法,有包埋渗铝法、热浸镀法、等离子渗、料浆渗、热喷涂、冷喷涂以及自蔓延高温合成等[18]

包埋渗铝[19~26]制备的渗层质量好、操作简单、能制备形状复杂的工件。包埋渗铝的原理是,化学反应产生的Al原子沉积在基体表面,在高温下与基体内的元素互扩散生成金属化合物。Yang等[27]用粉末包埋法在770℃在316L钢表面渗铝12 h,制备出均匀、致密、厚度约为20 μm的Fe-Al涂层。谢欢等[28]研究了在GCr15钢表面的粉末包埋渗铝工艺,制备出表面平整、厚度大于70 μm的渗铝层。用包埋渗铝法能在不同金属基体材料表面通过优化工艺制备出均匀致密的涂层。

已有研究表明,渗铝剂中的铝源和活化剂对涂层的物相成分有较大的影响。铝源的Al含量越高,制备涂层时越容易生成脆性相。Rohr等[29]用纯Al粉作为Al源对P91钢渗铝,制备出厚度约为50 μm的Fe2Al5相涂层。而用活性较低的Cr5Al8合金粉作为Al源渗铝,可制备出厚度约5 μm的韧性FeAl相涂层。BATES等[30]分别用Cr-25Al和Cr-15Al粉作为铝源对T91钢渗铝,前者生成的涂层由Fe2Al5相和FeAl相组成,后者生成的涂层为FeAl相。KE等[31]分别用NH4Cl和AlCl3作为活化剂对P02钢渗铝,前者的涂层由Ni3Al相组成,后者的涂层由Ni2Al3、NiAl和Ni3Al相组成。这表明,为了制备韧性相涂层,需调控渗铝剂和活化剂并进行低活性渗铝。

316L钢是制造聚变堆包层结构的主要候选材料[32~34]。本文用粉末包埋法在316L不锈钢平面试样和钢管内壁渗铝制备Fe-Al涂层,研究渗铝剂配比、渗铝温度和渗铝时间对涂层微观结构组织及物相的影响,并对比管内壁与平面试样的涂层微观结构分析基体表面曲率对涂层生长的影响,以揭示FeAl涂层的生长机理。

1 实验方法

1.1 涂层的制备

实验用316L不锈钢基材的化学成分,列于表1。管状样品的直径为25 mm长度为80 mm,块状样品的尺寸为10 mm × 10 mm × 6 mm。依次用240#、400#、800#、1200#、2000#金相砂纸将其打磨,然后用丙酮和乙醇超声清洗5 min后晾干。

表1   316L不锈钢基材的化学成分(质量分数,%)

Table 1  Chemical composition of 316L stainless steel (%, mass fraction)

ElementFeCrNiMoMnTotal
%68.9317.2110.302.331.23100

新窗口打开| 下载CSV


为了制备韧性相涂层进行低活性渗铝,铝源为Fe-Al粉(70%Al,30%Fe),活化剂为NH4Cl粉。三种渗铝剂配比,列于表2,渗铝剂的组成为Fe-Al粉(铝源)、Al2O3 (惰性填充剂)和NH4Cl (活化剂)。将粉末渗铝剂混合均匀后,在60℃烘干3 h。

表2   三种渗铝剂配比组成(质量分数,%)

Table 2  Composition of the three aluminizing agent ratios (%, mass fraction)

Fe-AlAl2O3NH4Cl
P165323
P275223
P385123

新窗口打开| 下载CSV


在316L钢管内装入渗铝剂并放入间距约为2 cm的3个块状样品,将渗铝剂压实后放入密封的渗铝腔室中进行渗铝。渗铝过程:将渗铝腔室抽真空至< 3 × 10-3 Pa后充入氩气至大气压,加热至实验温度后保温。最佳渗铝工艺参数:渗铝温度为700、750和800℃,保温时间为3、6、9 h。

1.2 涂层的表征

使用型号为FEI APREO型扫描电子显微镜和能谱仪(EDS)观察涂层的表面形貌和截面形貌,以及相的化学成分。测试涂层XRD谱,以分析其物相组成,Cu Kα靶,特征波长λ = 0.154148 nm,扫描速度为1 (°)/min。

2 结果和讨论

2.1 渗铝剂对Fe-Al涂层组织结构的影响

为了制备FeAl韧性相涂层,选择低活性的FeAl粉作为铝源。采用表1中三种配比的渗铝剂在800℃保温渗铝6 h。

制备出的Fe-Al涂层的表面和截面形貌如图1所示。可以看出,用三种配比渗铝剂制备的涂层其厚度均匀且致密性良好,涂层的表面有渗剂粒子粘附或镶嵌。渗铝剂中FeAl粉的比例(质量分数,下同)分别为65%、75%和85%,制备出的Fe-Al涂层厚度分别为16.6 μm、27.5 μm和15.1 μm。渗铝剂中FeAl粉比例较低(65%)的涂层其厚度较小,因为铝源中FeAl粉的含量较低,与催化剂反应生成活性Al原子的速率较低,使膜层的生长速率较低;渗铝剂中FeAl粉的含量85%的涂层厚度最小,因为渗铝剂中的Al2O3分散剂较少且粉末的粘结严重。渗铝结束后含85%FeAl粉的渗铝剂粘结严重,而使用另外两种渗铝剂则没有出现明显的粘结。总之,渗铝剂配比对涂层的生长速率有重要的影响。

图1

图1   不同渗铝剂配比的Fe-Al涂层的表面和截面形貌

Fig.1   Surface and cross-sectional morphology of Fe-Al coatings prepared with different aluminizing agent ratios (a, e) P1; (b, d) P2; (c, f) P3


图2给出了涂层的XRD谱。可以看出,用三种配比渗铝剂制备的涂层其衍射峰与Pm-3m (221)结构的FeAl相和Fm-3m (225)结构的Fe3Al相一一对应。涂层位置的EDS点扫描结果如图3所示并列于表3。可以看出,涂层表层区域的Fe/Al原子比接近1∶1,表明涂层的表层为FeAl相;而涂层内部区域的Fe/Al原子比接近3∶1,表明涂层的内部区域为 Fe3Al相。

图2

图2   不同渗铝剂配比的Fe-Al涂层的XRD谱

Fig.2   XRD spectra of Fe-Al coatings prepared with different ratios of aluminizing agents


图3

图3   不同深度的能谱选取点

Fig.3   Energy spectrum of different depth


表3   谱1和谱2的EDS结果

Table 3  EDS results for spectrogram 1 and spectrogram 2 (%, mass fraction)

SpectrogramAlCrFeNi
135.187.0153.384.44
210.3121.2255.6412.83

新窗口打开| 下载CSV


综上所述,当渗铝剂中Fe-Al粉的含量为75%,惰性填充剂Al2O3粉的含量为22%,催化剂NH4Cl粉的含量为3%时,涂层的生长效率最高,制备出的涂层为韧性相FeAl和Fe3Al相,涂层均匀平整且致密性良好。鉴于此,后续实验采用这种渗铝剂配比。

2.2 渗铝温度对Fe-Al涂层组织结构的影响

渗铝温度是影响涂层生长的重要因素[35]。本文分别在700、750、800℃保温渗铝6 h制备涂层,然后分析涂层的微观组织结构,以找出最佳的渗铝温度范围。

图4a表明,在700℃渗铝制备的Fe-Al涂层表面晶粒细小,晶界处微微凸起。其原因可能是渗铝温度较低,基体元素原子沿晶界较快地向外扩散,使晶界处的涂层生长较快而形成凸起的脊。随着渗铝温度的提高原子在涂层表面横向扩散的速度提高,在涂层生长过程中表面晶粒合并和熟化,使晶粒尺寸变大和表面更加平整,如图4b、c所示。

图4

图4   在不同温度渗铝的Fe-Al涂层的表面形貌

Fig.4   SEM images of surface morphology of Fe-Al coatings prepared at different aluminizing temperatures (a) 700oC; (b) 750oC; (c) 800oC


图5给出了平面试样在不同温度渗铝后的Fe-Al涂层截面形貌和能谱分析结果。可以看出,分别在三个温度渗铝的Fe-Al涂层都连续均匀的覆盖在基体表面,涂层与基体之间的界面清晰,没有孔洞,涂层与基体形成了良好的冶金结合。

图5

图5   在不同温度渗铝6 h的Fe-Al涂层的截面形貌BSE图片和能谱分析

Fig.5   BSE pictures and energy spectrum analysis results of the cross-sectional morphology of Fe-Al coatings aluminized at different aluminizing temperatures for 6 h (a, d) 700oC; (b, e) 750oC; (c, f) 800oC


截面BSE结果表明,在三种温度制备的涂层均为双层结构,两层的元素分布有明显的不同,但是两层间没有明显的界面。能谱分析结果表明,涂层的表层是富铝层,由Fe和Al元素和少量Cr元素组成;内层为元素扩散层,Al元素含量逐渐降低到0,Fe元素的含量呈现逐渐提高,Cr、Ni元素局部富集。Cr、Ni元素局部富集的原因,可能是与Al生成了金属间化合物相[20,36],本文实验中部分样品的XRD谱中检测到铬铝化合物相,Pm3m (221)结构的NiAl相与FeAl相的衍射峰极为接近,无法区分。Al元素的含量降低到0而Fe的含量提高到稳定值的位置,定义为Fe-Al涂层与基体的分界线。可以确定,在700℃、750℃、800℃渗铝的Fe-Al涂层其厚度分别为4.4 μm、18.8 μm和27.5 μm。富铝层的厚度分别为2.4 μm和8.1 μm、13.1 μm,扩散层的厚度分别为2.0 μm、10.7 μm和14.4 μm。在700℃渗铝原子的扩散速度较低,涂层较薄但是均匀致密。随着渗铝温度的提高活性Al原子的沉积速率和原子扩散速率随之提高,涂层的富Al层和扩散层的厚度都增加。在750℃和800℃渗铝的Fe-Al涂层其扩散层内出现了弥散分布的孔洞。能谱分析结果表明,在涂层的生长过程中,沉积在基体表面的活性Al元素与基体元素产生了浓度差,基体中的Fe、Cr等元素向外扩散而Al元素向内扩散,扩散层中的Fe元素扩散速率高且其原子半径大,导致局部元素流失形成孔洞。总之,渗铝温度对Al原子的沉积和Fe、Al元素的互扩散有重要的影响,对涂层的生长速率和微观组织结构也有较大的影响。

图6可以看出,在700~800℃渗铝的Fe-Al涂层主要由FeAl相和Fe3Al相组成,表明在此温度区间渗铝对物相组成的影响不大。

图6

图6   不同温度渗铝Fe-Al涂层的XRD谱

Fig.6   XRD spectrum of Fe-Al coatings prepared at different aluminizing temperatures


在包埋渗铝过程中,活性铝原子沉积在基体表面,然后与基体中的原子互扩散,扩散系数反应了渗铝过程中原子的扩散速度。从图5可见,随着渗铝温度的提高Fe-Al涂层的厚度增加。由于扩散的深度远小于试样的厚度,引入半无限固体扩散模型。在不同渗铝温度Al原子的扩散系数D与扩散物质的体积浓度等参数的关系为

C=Cs-(Cs-C0)erf(x2Dt1/2)

初始条件:t = 0时 x ≥ 0,CC0

边界条件:t > 0时 x = 0,CCsx=∞,CC0

式中C为扩散物质的体积浓度(原子数/m3或kg/m3);Cs为表面渗铝气氛所控制的铝原子浓度;C0为固体表面的原始含铝量;t为扩散时间;x为扩散距离(cm)。

若初始条件C0=0,则得

C=Cs[1-erf(x2Dt1/2)]

在已知x的情况下CCs为一个定值,则得

x2=4KDt[37]

式中x为扩散距离,近似为Fe-Al涂层扩散层厚度;K为常数(取1)。

式(3)可求得不同温度下铝原子的扩散系数,结果列于表4中。由表4可见,随着渗铝温度的提高扩散系数随之增大。渗铝温度从700℃提高到750℃扩散系数增大约16.5倍,表明渗铝温度是影响扩散系数的主要因素。而渗铝温度从750℃提高到800℃扩散系数只增加约3.2倍,表明扩散系数还受渗铝剂成分变化的影响。随着渗铝温度的提高渗铝反应加快,Al源的含量不断降低,使扩散驱动力减小。

表4   不同温度的Al原子扩散系数(D)

Table 4  Diffusion coefficients of Al atoms at different temperatures (D)

Temperature / oC700750800
Diffusion coefficient / m2·s-14.63 × 10-177.60 × 10-162.40 × 10-15

新窗口打开| 下载CSV


2.3 渗铝时间对Fe-Al涂层组织结构的影响

在渗铝过程中,渗铝时间是影响涂层物相成分和厚度的重要因素[22,38~40],但是,基体材料或渗铝温度等不同,涂层的物相成分随着渗铝时间的变化规律也不同[41~43]。在包埋渗铝过程中涂层的生长过程符合菲克第二定律[28,39],在一定的时间内涂层的厚度随着渗铝时间的增加而增加。

图7给出了在316L不锈钢平面试样渗铝不同时间后Fe-Al涂层的表面形貌。图7a表明,渗铝3h的Fe-Al涂层表面出现了大量凹槽。随着渗铝时间的增加Al原子和Fe原子扩散更充分,表面晶粒合并长大,且晶粒间结合紧密,表面致密性提高(图7b)。但是,渗铝时间为9 h的涂层其表面晶粒严重粗化、凸起,使涂层表面的粗糙度提高(图7c)。

图7

图7   渗铝不同时间Fe-Al涂层的表面形貌

Fig.7   SEM images of surface morphology of Fe-Al coatings prepared at different aluminizing times (a) 3 h; (b) 6 h; (c) 9 h


图8给出了在316L不锈钢平面试样渗铝不同时间的Fe-Al涂层的截面形貌和能谱分析。可以看到,在800℃渗铝不同时间的涂层与316L基体的界面结合紧密、没有孔洞。随着渗铝时间的增加Al和Fe原子之间扩散更充分,Fe-Al涂层的厚度增加。从图8的涂层截面形貌和EDS线扫结果可以看出,渗铝3、6、9 h的Fe-Al涂层其厚度分别为19.5 μm、27.5 μm和46.4 μm,富铝层分别为9.7、13.1、20.0 μm,扩散层分别为9.8、14.4、26.4 μm,扩散层与富铝层厚度比逐渐增大,分别为1.01、1.07、1.32。同时,随着渗铝时间的增加富Al层与扩散层界面区域的孔洞数量增多,孔洞的尺寸约为1~2 μm。涂层的生长过程,是界面处Al原子向基体内部扩散、基体元素向涂层表面扩散和界面向基体方向移动的过程。这表明,元素扩散层中孔洞的形成,是元素扩散使界面处空位缺陷增多和合并的结果。

图8

图8   在800℃渗铝不同时间Fe-Al涂层的截面形貌的BSE图片和能谱分析

Fig.8   BSE pictures and energy spectrum analysis results of the cross-sectional morphology of Fe-Al coatings aluminied at 800oC for different times (a, d) 3 h; (b, e) 6 h; (c, f) 9 h


图9可见,渗铝3 h和6 h的Fe-Al涂层其物相由FeAl和Fe3Al相组成,渗铝9 h的Fe-Al涂层中生成了大量的Al8Cr5相。渗铝时间的延长使渗铝反应更充分,Cr元素在扩散层中浓度梯度的提高使扩散到富Al层的Cr增加,与Al原子发生反应生成了大量的Al8Cr5相。

图9

图9   不同渗铝时间Fe-Al涂层的XRD谱

Fig.9   XRD spectrum of Fe-Al coatings aluminized for different times


2.4 块样和管内壁表面Fe-Al涂层的生长

图10表明,在316L钢管内壁制备的Fe-Al涂层与316L基体的界面皆紧密结合无孔洞。渗铝温度较低或渗铝时间较短的涂层较薄,但是均匀致密(图10a、c)。在750℃渗铝6 h的涂层,富Al层表面成不规则的齿状分布且扩散层中出现孔洞(图10b)。随着渗铝温度提高和保温时间延长,涂层的表面平整度提高、厚度增加、扩散层中的孔洞数量明显增多(图10d)。在800℃渗铝9 h的涂层其厚度达到了62.1 µm,但是涂层过厚以致在富Al层中出现裂纹(图9e)。

图10

图10   在不同温度渗铝不同时间316L管内壁的Fe-Al涂层的截面形貌的BSE图片

Fig.10   BSE images of the cross-sectional morphology of Fe-Al coatings aluminized on the inner wall of 316L tubes at different temperature for different time (a) 700oC/6 h; (b) 750oC/6 h; (c) 800oC/3 h; (d) 800oC/6 h; (e) 800oC/9 h


图11可见,渗铝温度和时间相同的管试样内壁和平面试样的Fe-Al涂层,前者的厚度都大于后者。随着渗铝温度的提高和渗铝时间的增加,涂层厚度都随之增加。图11a表明,在800℃渗铝的涂层其厚度大幅度增大,管内壁涂层的厚度约为平面试样的两倍。从图11b可见,渗铝6 h的涂层两者的厚度差最大。上述结果表明,工艺条件相同的平面样品和管内壁的Fe-Al涂层,其厚度并不相同。

图11

图11   316L不锈钢平面试样和管试样Fe-Al涂层的厚度与温度和时间的拟合

Fig.11   Fitted plots of Fe-Al coating thickness and temperature (a) and time (b) for 316L stainless steel planar sample and tube sample


管内壁的涂层生长较快,源于管状基体表面的曲率对涂层生长形核率的影响。如图12所示,基体表面有三个不同的形状,生成三个晶核具有相同的曲率半径r和相同的θ角,但是其体积却不同。凹曲面上生成的晶核体积最小(图12a),平面上形成的晶核体积次之(图12b),凸曲面上形成的晶核体积最大(图12c)。这表明,在曲率半径r和接触角θ相同的条件下,晶核的体积因界面曲率的不同而不同。凹曲面的形核效能最高,平面的效能次之。凸曲面的效能最低。其原因是,较小体积的晶核其半径便可达到临界值。在316L钢管样品内壁表面属于凹曲面形核,而在平面样品表面属于平面形核。因此,在相同的条件下在管内壁的形核生长更快。

图12

图12   在不同形状的固体杂质表面形核的晶核体积

Fig.12   Nucleation volume at solid impurity surface of different shape (a) concave surface; (b) planar surface; (c) convex surface


3 结论

(1) 渗铝剂配比对涂层的生长速率有重要影响,在700~800℃渗铝Fe-Al粉含量为75%的涂层其生长率最高,且均匀平整、致密性良好。

(2) 在700~800℃渗铝的Fe-Al涂层均匀、连续、与基体形成冶金结合。涂层的外层是FeAl韧性富铝相;内层是Fe3Al相元素扩散层。随着渗铝温度的提高Al原子的扩散性增强,渗铝6h的涂层其厚度从4.4 μm增加到27.5 μm。

(3) 在800℃渗铝3 h-9 h,涂层的厚度明显增加。元素扩散使富Al层与扩散层界面的空位缺陷增多并合并形成微孔洞(尺寸约1~2 μm),随着渗铝时间的延长微孔洞数量增多。

(4) 在700~800℃渗铝316L不锈钢管内壁表面的Fe-Al涂层与基体界面结合紧密无孔洞。在曲面上形核的临界晶核体积小于在平面形核的临界晶核体积,在曲面形核的效能高,形核更快。在渗铝工艺参数相同的条件下管内壁表面的涂层其厚度是平面样品表面涂层厚度的1.1~2.1倍。

参考文献

Zinkle S J, Was G S.

Materials challenges in nuclear energy

[J]. Acta Mater., 2013, 61(3): 735

[本文引用: 1]

Gi K, Sano F, Akimoto K, et al.

Potential contribution of fusion power generation to low-carbon development under the Paris Agreement and associated uncertainties

[J]. Energy Strat. Rev., 2020, 27: 1

Luo L M, Liu Y L, Liu D G, et al.

Preparation technologies and performance studies of tritium permeation barriers for future nuclear fusion reactors

[J]. Surf. Coat. Technol., 2020, 403: 1

[本文引用: 1]

Ushids H, Katayama K, Matsuura H, et al.

Tritium permeation behavior through pyrolytic carbon in tritium production using high-temperature gas-cooled reactor for fusion reactors

[J]. Nucl. Mater. Energy., 2016, 9:524

[本文引用: 1]

Zhang G K, Xiang X, Yang F L, et al.

Current research and development activities on tritium permeation barriers for fusion reactors in China

[J]. Nucl. Chem. Radiochem., 2015, 37(5): 310

张桂凯, 向 鑫, 杨飞龙 .

我国聚变堆结构材料表面阻氚涂层的研究进展

[J]. 核化学与放射化学, 2015, 37(5): 310

DOI     

阻氚涂层是聚变堆实现氚自持及氚安全的关键科学与技术问题之一。我国通过国家磁约束聚变能发展研究专项依托国内优势单位部署了阻氚涂层基础问题及工程化技术研发工作。本文介绍了国内外聚变堆结构材料表面阻氚涂层研究进展,重点评述了近几年我国在阻氚涂层的材料选择、制备技术及阻滞氢渗透机制三个科学技术问题的研究进展,提出今后的研究方向。目前我国阻氚涂层材料类型以氧化物涂层为主,涂层制备工艺技术在不断优化和更新。Al<sub>2</sub>O<sub>3</sub>/FeAl阻氚涂层的电化学沉积铝(ECA)、粉末包埋渗铝(PC)及热浸铝(HDA)等方法的工艺处理规模及涂层阻氚性能在国际上均相对领先。发展了研究阻氚涂层阻滞氢渗透作用机理的方法,将通常基于Fick定律的表象研究方法向原子级方法前推了一步。未来需在考虑涂层制备工艺与基体材料成分、性能的关系及其在复杂形状结构件的适用性基础上,开发长寿命、高阻氚性能的阻氚涂层材料及制备工艺。

Chikada T, Tanaka T, Yuyama K, et al.

Crystallization and deuterium permeation behaviors of yttrium oxide coating prepared by metal organic decomposition

[J]. Nucl. Mater. Energy., 2016, 9: 529

Mochizuki J, Horikoshi S, Oya Y, et al.

Deuterium permeation behavior of tritium permeation barrier coating containing carbide nanoparticles

[J]. Fusion Eng. Des., 2017, 124: 1073

Yang F, Xiang X, Lu G, et al.

Tritium permeation characterization of Al2O3/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers

[J]. J. Nucl. Mater., 2016, 478: 144

[本文引用: 1]

Wu Y.

Design status and development strategy of China liquid lithium-lead blankets and related material technology

[J]. J. Nucl. Mater., 2007, 367-370: 1410

[本文引用: 1]

Zhan Q, Yang H G, Zhao W W, et al.

Grazing X-ray diffraction of surface oxide films on Fe-Al/ Al2O3 composite coating

[J]. Nucl. Energy Sci. Technol., 2012, 46(S1): 517

占 勤, 杨洪广, 赵崴巍 .

Fe-Al/ Al2O3涂层表面氧化膜的掠入射X射线衍射研究

[J]. 原子能科学技术, 2012, 46(S1): 517

Zheng G, Carpenter D, Dolan K, et al.

Experimental investigation of alumina coating as tritium permeation barrier for molten salt nuclear reactors

[J]. Nucl. Eng. Des., 2019, 353: 1

Xiang X, Zhang G K, Wang X L, et al.

Review on preparation techniques of FeAl/Al2O3 composite tritium permeation barriers

[J]. Rare Met. Mater. Eng., 2016, 45(2): 522

[本文引用: 1]

Zhang H, Zhou H, Li N, et al.

Effect of ce on microstruvture and properties of hot dipaluminized tritium permeation barrier

[J]. Acta Metall. Sin., 2011, 47(12): 1527

[本文引用: 1]

Huang J, Xie H, Luo L M, et al.

Preparation and properties of FeAl/Al2O3 composite tritium permeation barrier coating on surface of 316L stainless steel

[J]. Surf. Coat. Technol., 2020, 383: 1

Yuan X M, Yang H G, Zhao W W, et al.

Study on pack cementation process for preparation of low activity pack aluminizing layer on RAFM steel

[J]. Mater. Rep., 2015, 29(S1): 66

[本文引用: 1]

袁晓明, 杨洪广, 赵崴巍 .

RAFM钢表面粉末包埋法制备低活性渗铝层工艺研究

[J]. 材料导报, 2015, 29(S1): 66

[本文引用: 1]

Dai Y N. Binary Alloy Phase Diagrams [M]. Beijing: Science Press, 2009

[本文引用: 1]

戴永年. 二元合金相图集 [M]. 北京: 科学出版社, 2009

[本文引用: 1]

Yang Y, Zhang F, He J, et al.

Microstructure, growth kinetics and mechanical properties of interface layer for roll bonded aluminum-steel clad sheet annealed under argon gas protection

[J]. Vacuum., 2018, 151: 1

[本文引用: 1]

Chen W Q, La P Q, Luo G, et al.

Review of preparation and corrosion resistance of Fe-Al coatings in molten salt

[J]. Foundry Technol., 2022, 43(11): 948

[本文引用: 1]

陈维铅, 喇培清, 罗 刚 .

Fe-Al涂层制备及耐熔盐腐蚀性研究

[J]. 铸造技术, 2022, 43(11): 948

[本文引用: 1]

Wang T, Pu J, Bo C, et al.

Sol-gel prepared Al2O3 coatings for the application as tritium permeation barrier

[J]. Fusion Eng. Des., 2010, 85(7): 1068

[本文引用: 1]

Li L F, Shen J N, Li M C, et al.

Pack aluminizing process and characterization of aluminizen layer on stainless steels

[J]. Corros. Sci. Prot. Technol., 2004, (2): 79

[本文引用: 1]

李凌峰, 沈嘉年, 李谋成 .

不锈钢表面粉末包埋渗铝过程及渗铝层表征

[J]. 腐蚀科学与防护技术, 2004, (2): 79

[本文引用: 1]

采用固体粉末包埋法对00Cr17Ni14Mo2和1Cr18Ni9Ti 不锈钢进行渗铝,形成富铝表层.阐述了不锈钢表面渗铝过程,并且对不锈钢渗铝层的成分、结构和形貌进行了表征.分析了合金中Ni元素对渗铝过程的影响.结果表明:渗铝层呈多层结构,渗层与基体及层间结合良好,界限明显、齐整.渗层组织主要由FeAl相组成,并含一定量的Ni3Al相.

Huang Z J, Jiang Z Q, Dong W B, et al.

High-temperature corrosion resistance of composite coatings prepared by microarc oxidation combined with pack cementation aluminum

[J]. Mater. Eng., 2018, 46(1): 44

黄祖江, 蒋智秋, 董婉冰 .

微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能

[J]. 材料工程, 2018, 46(1): 44

DOI     

采用包埋渗铝技术在C103铌合金基体上制备Al/C103,通过微弧氧化(MAO)处理获得Al<sub>2</sub>O<sub>3</sub>陶瓷膜外层。利用X射线衍射仪(XRD)和配有能谱仪(EDS)的扫描电镜(SEM),分析复合涂层高温腐蚀前后的成分和组织结构,并研究其高温氧化和热腐蚀行为与机理。结果表明:包埋渗铝处理的Al/C103经1000℃氧化10h后增重为6.98mg/cm<sup>2</sup>,微弧氧化结合包埋渗铝制备的MAO/Al/C103增重为2.89mg/cm<sup>2</sup>;氧化20h后,MAO/Al/C103增重为57.52mg/cm<sup>2</sup>,高于Al/C103的28.08mg/cm<sup>2</sup>。在900℃熔融混合盐(75% Na<sub>2</sub>SO<sub>4</sub>和25% NaCl,质量分数)中腐蚀50h后,Al/C103和MAO/Al/C103的增重分别为70.54,55.71mg/cm<sup>2</sup>,表面生成了Al<sub>2</sub>O<sub>3</sub>和钙钛矿结构NaNbO<sub>3</sub>相;部分NaNbO<sub>3</sub>堵塞MAO微孔,阻碍熔盐向内扩散,MAO/Al/C103试样表现出较优的抗热腐蚀性。

Xiang Z D, Datta P K.

Formation of aluminide coatings on low alloy steels at 650 degrees C by pack cementation process

[J]. Mater. Sci. Technol., 2004, 20(10): 1297

[本文引用: 1]

Choi W J, Lee H, Park C W, et al.

High temperature oxidation behavior of molybdenum borides by silicon pack cementation process

[J]. Int. J. Refract. Met. Hard Mater., 2021, 100: 1

Nouri S, Azadeh M.

Microstructural investigation of the coatings prepared by simultsneous aluminizing and siliconizing process on gamma-TiAl

[J]. J. Min. Metall. Sect. B-Metall., 2019, 55(2): 217

Hu Y, Xiang Z.

Corrosion resistance and application of martensitic stainless steels with an external Cr-N coating layer formed by pack cementation process

[J]. Surf. Technol., 2019, 48(6): 282

Bateni M R, Shaw S, Wei P, et al.

Deposition of Fe-Al intermetallic coatings on solid oxide fuel cell (SOFC) interconnects by pack cementation

[J]. Mater. Manuf. Processes., 2009, 24(6): 626

[本文引用: 1]

Yang H G, Zhan Q, Zhao W W, et al.

Study of an iron-aluminide and alumina tritium barrier coating

[J]. J. Nucl. Mater., 2011, 417(1): 1237

[本文引用: 1]

Xie H, Yu L X, Ma R N, et al.

A study of pack aluminizing technology on the surface of GCr15 steel

[J]. J. Hebei Univ. Technol., 2017, 46(6): 53

[本文引用: 2]

谢 欢, 于立新, 马瑞娜 .

GCr15钢表面粉末包埋渗铝工艺研究

[J]. 河北工业大学学报, 2017, 46(6): 53

[本文引用: 2]

Rohr V, Schütze M, Fortuna E, et al.

Development of novel diffusion coatings for 9-12%Cr ferritic-martensitic steels

[J]. Mater. Corros., 2005, 56(12): 874

[本文引用: 1]

Bates B L, Wang Y Q, Zhang Y, et al.

Formation and oxidation performance of low-temperature pack aluminide coatings on ferritic-martensitic steels

[J]. Surf. Coat. Technol., 2009, 204(6): 766

[本文引用: 1]

Ke S R, Wang J, Zhu C Y, et al.

On the selection of halide activators for the formation of hybrid Ni-aluminide/Ni coatings on creep resistant ferritic steels by low temperature pack cementation process

[J]. Mater. Chem. Phys., 2015, 162: 1

[本文引用: 1]

Forcey K S, Ross D K, Simpson J C B, et al.

Hydrogen transport and solubility in 316L and 1.4914 steels for fusion reactor applications

[J]. J. Nucl. Mater., 1988, 160(2): 117

[本文引用: 1]

Perujo A, Forcey K S.

Tritium permeation barriers for fusion technology

[J]. FFusion Eng. Des., 1995, 28: 252

Yuan X M, Yang H G, Zhao W W, et al.

The pack-cementation process of iron-aluminide coating on china low activation martensitic and 316L austenitic stainless steel

[J]. Fusion Sci. Technol., 2011, 60(3): 1065

[本文引用: 1]

Zhang J X, Xu X Y, Song J F, et al.

Research progress of pack cementation aluminizing

[J]. Hot Work. Technol., 2018, 47(4): 22

[本文引用: 1]

张冀翔, 徐修炎, 宋健斐 .

粉末包埋渗铝研究进展

[J]. 热加工工艺, 2018, 47(4): 22

[本文引用: 1]

Majumdar S, Paul B, Kain V, et al.

Formation of Al2O3/Fe-Al layers on SS 316 surface by pack aluminizing and heat treatment

[J]. Mater. Chem. Phys., 2017, 190: 31

[本文引用: 1]

Li N, Chen Y, Chen X, et al.

Preparation method and diffusion mechanism of Fe-Al coating on Q235 low carbon steel by pack aluminizing

[J]. Chin. J. Mater. Res., 2021, 35(8): 572

DOI     

The Fe-Al coating, with compactness, stiffness, and continuity, could be prepared on Q235 low carbon steel by pack aluminizing. The phase structure, morphology, composition, and hardness of the prepared coating were characterized by XRD, SEM, EDS, and micro-hardness tester respectively. Results indicate that the Fe-Al coating is composed of Fe2Al5 and FeAl3 phases, whilst, the coating fabricated at 750℃ is particularly rich in Fe2Al5 phase. With the rising temperature, the thickness of Fe-Al coating increases, whereas the micro-hardness decreases. As a result of aluminizing for different time, the formed coatings are composed of the two phases Fe2Al5 and FeAl3 as well. However, with the increasing aluminizing time, the content of FeAl3 phase decreases, while the micro-hardness of the coating decreases slightly. Finally, a diffusion mechanism related with the formation of Fe-Al coating is proposed based on the comprehensive analysis on the thermodynamics and kinetics of pack aluminizing process.

Bahadur A, Sharma T L, Parida N, et al.

Structure-property correlation in Al-diffusion coated steels

[J]. J. Mater. Sci., 1993, 28(19): 5375

[本文引用: 1]

Yener T.

Low temperature aluminising of Fe-Cr-Ni super alloy by pack cementation

[J]. Vacuum, 2019, 162:114

[本文引用: 1]

Rastkar A R, Rezvani N.

The effects of processing time on the microstructure and composition of plasma pack-aluminized and oxidized surface layers on low carbon steel

[J]. Metall. Mater. Trans. A, 2015, 46A(9) : 4132

[本文引用: 1]

Xiang Z D, Datta P K.

Low temperature aluminisation of alloy steels by pack cementation process

[J]. Mater. Sci. Technol., 2006, 22(10): 1177

[本文引用: 1]

Lin T, Shao H P, Zhang W W. Preparation of Oxidation Resistance Coating of Silicide by Pack Cementation [M]. France: Atlantis Press, 2015

Wang X, Fan Y Z, Zhao X, et al.

Process and high-temperature oxidation resistance of pack-aluminized layers on cast iron

[J]. Metals., 2019, 9(6): 1

[本文引用: 1]

/