Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (6): 432-442    DOI: 10.11901/1005.3093.2022.209
  研究论文 本期目录 | 过刊浏览 |
Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能
王伟(), 彭怡晴, 丁士杰, 常文娟, 高原, 王快社
西安建筑科技大学冶金工程学院 西安 710055
Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC
WANG Wei(), PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe
School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
引用本文:

王伟, 彭怡晴, 丁士杰, 常文娟, 高原, 王快社. Ti-6Al-4V合金表面石墨基粘结固体润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(6): 432-442.
Wei WANG, Yiqing PENG, Shijie DING, Wenjuan CHANG, Yuan GAO, Kuaishe WANG. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. Chinese Journal of Materials Research, 2023, 37(6): 432-442.

全文: PDF(20082 KB)   HTML
摘要: 

使用石墨作为固体润滑剂、硅酸钠为粘结剂、二氧化硅为填料、去离子水为分散介质,用浆料法在Ti-6Al-4V钛合金表面制备石墨基粘结固体润滑涂层。用球盘式摩擦磨损试验机测试这种涂层在500~800℃的摩擦学性能,使用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)以及X射线光电子能谱仪(XPS)等手段分析其物相、显微组织结构、元素组成及其化学态,研究了这种涂层的润滑机理。结果表明:这种石墨基粘结固体润滑涂层在600~700℃的摩擦学性能优异,在660℃其摩擦系数(0.03)和磨损率(0.953×10-4 mm3/(N·m))最低。涂层中的熔融硅酸钠与SiO2的协同润滑作用降低了石墨的热损失,在摩擦界面上生成的易剪切的粘性成分减少了摩擦磨损;在摩擦过程中,石墨通过层间剪切和吸附气体产生了良好的润滑性能,SiO2增强了涂层的承载能力和涂层与基体之间的粘结强度,使涂层的耐磨性能提高。

关键词 金属学石墨固体润滑涂层润滑性能磨损机制    
Abstract

Graphite-based solid lubricating coatings were prepared on Ti-6Al-4V substrate by the slurry method with graphite as solid lubricant, silica as filler, sodium silicate as binder and deionized water as dispersion medium. The tribological properties of the coatings were evaluated by a ball-on-disk friction and wear tester at 500~800℃. The microstructure, chemical composition, elements state and phase constituents of the coatings were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS), respectively. The lubrication mechanism of the coating was also investigated. The results show that the coatings have excellent adhesion, anti-friction and anti-wear properties at 600~700℃. The coatings present the lowest friction coefficient (0.03) and wear rate (0.953×10-4 mm3/(N·m)) at 660℃. At the same time, the co-lubrication of molten sodium silicate and SiO2 in the coating reduces the heat loss of graphite, and the shear viscous component generated on the friction interface reduces the friction and wear. In the process of friction, graphite produces good lubrication performance through interlaminar shear and adsorption gas, SiO2 enhances the bearing capacity of the coating and the bond strength between the coating and the matrix, so that the wear resistance of the coating was improved.

Key wordsmetallography    graphite    solid lubricating coating    lubricating properties    wear mechanism
收稿日期: 2022-04-14     
ZTFLH:  TH117  
基金资助:国家自然科学基金(51975450)
通讯作者: 王伟,副教授,gackmol@163.com,研究方向为固体润滑涂层的制备及摩擦学性能
Corresponding author: WANG Wei, Tel: 13609264618, E-mail: gackmol@163.com
作者简介: 王伟,男,1985年生,博士
ElementsAlVFeTi
Content6.594.770.035Bal.
表1  Ti-6Al-4V合金的化学成分 (质量分数,%)
图1  石墨粘结固体润滑涂层在不同温度保温后的XRD图像、SEM照片和元素含量以及在700℃热处理后的SEM照片和元素含量
图2  石墨粘结固体润滑涂层的XPS谱
图3  石墨粘结固体润滑涂层的TG-DSC曲线
图4  涂层在不同温度下的摩擦系数、氮化硅球的磨损率和平均摩擦系数
图5  不同温度下涂层磨痕表面的SEM照片
图6  不同温度下氮化硅球磨斑的SEM照片和EDS图
Temperature600℃630℃660℃700℃
Ti K30.4055.5128.196.94
Al K6.375.107.085.82
O K51.3530.2150.2171.53
Si K4.674.225.295.34
C K7.202.339.2210.38
表2  不同温度下氮化硅球磨损表面的元素含量 (质量分数,%)
图7  在660℃摩擦试验后涂层磨痕表面的元素分布
图8  涂层的Raman光谱和在660℃Ti-6Al-4V钛合金盘磨损表面的Raman光谱
图9  Ti-6Al-4V钛合金盘在660℃磨损表面的XPS谱
1 Guo P R, Qiu M, Li Y C, et al. Effects of MoS2 on tribology and adhesion properties of polytetrafluoroethylene base bonded solid lubrication coating [J]. Mater. Mech. Eng., 2015, 39(7): 82
1 郭培锐, 邱 明, 李迎春 等. MoS2对PTFE基粘结固体润滑涂层摩擦学和附着性能的影响 [J]. 机械工程材料, 2015, 39(7): 82
2 Yang K M, Yan H X, Zhang Y B, et al. Properties of boron nitride/hyperbranched polysiloxane-polyimide bonded solid lubricant coating [J]. Tribology, 2021, 42(5): 1053
2 杨开明, 颜红侠, 张渊博 等. 氮化硼/超支化聚硅氧烷-聚酰亚胺粘结固体润滑涂层的性能 [J]. 摩擦学学报, 2021, 42(5): 1053
3 Li B, Ye Y P, Wan H Q, et al. Preparation and tribology properties of hydrophilic molybdenum disulfide bonded solid lubricating coatings [J]. China Surf. Eng., 2017, 30(4): 142
3 李 斌, 冶银平, 万宏启 等. 水性二硫化钼基粘结固体润滑涂层制备及其摩擦学性能 [J]. 中国表面工程, 2017, 30(4): 142
4 Liu W B, Chang Q Y, Zhang H, et al. The influence of curing methods on tribological properties of bonded solid lubricant coatings [J]. Aerosp. Control Appl., 2020, 46(4): 64
4 刘文博, 常秋英, 张 浩 等. 固化方式对粘结固体润滑涂层摩擦学性能的影响 [J]. 空间控制技术与应用, 2020, 46(4): 64
5 Qiao H B, Gu X P, Yang J G, et al. Effects of fillers on friction and wear properties of bonded solid lubricant coatings [J]. Mater. Mech. Eng., 2013, 37(11): 64
5 乔红斌, 古绪鹏, 杨建国 等. 填料对粘结固体润滑涂层摩擦磨损性能的影响 [J]. 机械工程材料, 2013, 37(11): 64
6 Xu J, Zhou Z R, Zhang C H, et al. An investigation of fretting wear behaviors of bonded solid lubricant coatings [J]. J. Mater. Process. Technol., 2007, 182: 146
doi: 10.1016/j.jmatprotec.2006.07.023
7 Ye Y P, Chen J M, Zhou H D. An investigation of friction and wear performances of bonded molybdenum disulfide solid film lubricants in fretting conditions [J]. Wear, 2009, 266: 859
doi: 10.1016/j.wear.2008.12.012
8 Luo D B, Fridrici V, Kapsa P. Evaluating and predicting durability of bonded solid lubricant coatings under fretting conditions [J]. Tribol. Int., 2011, 44: 1577
doi: 10.1016/j.triboint.2010.10.007
9 Zhu S Y, Cheng J, Qiao Z H, et al. High temperature solid-lubricating materials: a review [J]. Tribol. Int., 2019, 133: 206
doi: 10.1016/j.triboint.2018.12.037
10 Liu H, Guo J H, Xia T D, et al. Research and application status of graphite-based solid lubrication composite coatings [J]. Paint Coat. Ind., 2019, 49(1): 84
10 刘 鹤, 郭军红, 夏天东 等. 石墨基固体润滑复合涂料的研究与应用现状 [J]. 涂料工业, 2019, 49(1): 84
11 Scharf T W, Prasad S V. Solid lubricants: a review [J]. J. Mater. Sci., 2013, 48: 511
doi: 10.1007/s10853-012-7038-2
12 Savage R H. Graphite lubrication [J]. J. Appl. Phys., 1948, 19: 1
13 Kane J J, Contescu C I, Smith R E, et al. Understanding the reaction of nuclear graphite with molecular oxygen: kinetics, transport, and structural evolution [J]. J. Nucl. Mater., 2017, 493: 343
doi: 10.1016/j.jnucmat.2017.06.001
14 Zhou Y, Wang S Q, Zhao Z Z, et al. Stability of MLG/Fe2O3 nano-particulate Tribo-layer on TC11 Ti-alloy [J]. Chin. J. Mater. Res., 2019, 33: 763
14 周 银, 王树奇, 赵振江 等. TC11合金表面MLG/Fe2O3纳米颗粒摩擦层的稳定性 [J]. 材料研究学报, 2019, 33: 763
15 Liu C C, Chen L, Zhou J S, et al. Preparation and tribological behaviors of graphite-phosphate solid lubricating coatings [J]. China Surf. Eng., 2013, 26(5): 96
15 刘灿灿, 陈 磊, 周健松 等. 石墨-磷酸铝铬润滑涂层的制备及其摩擦学性能 [J]. 中国表面工程, 2013, 26(5): 96
16 Jia Y L, Wan H Q, Chen L, et al. Effects of phosphate binder on the lubricity and wear resistance of graphite coating at elevated temperatures [J]. Surf. Coat. Technol., 2017, 315: 490
doi: 10.1016/j.surfcoat.2017.03.013
17 Wang L, Tieu A K, Zhu H T, et al. The effect of expanded graphite with sodium metasilicate as lubricant at high temperature [J]. Carbon, 2020, 159: 345
doi: 10.1016/j.carbon.2019.12.034
18 Huai W J, Zhang C H, Wen S Z. Graphite-based solid lubricant for high-temperature lubrication [J]. Friction, 2021, 9: 1660
doi: 10.1007/s40544-020-0456-2
19 Ravikumar D, Neithalath N. Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH [J]. Cem. Concr. Compos., 2012, 34: 809
doi: 10.1016/j.cemconcomp.2012.03.006
20 Wang L, Tieu A K, Cui S G, et al. Lubrication mechanism of sodium metasilicate at elevated temperatures through tribo-interface observation [J]. Tribol. Int., 2020, 142: 105972
doi: 10.1016/j.triboint.2019.105972
21 Sliney H E. Solid lubricant materials for high temperatures—a review [J]. Tribol. Int., 1982, 15: 303
doi: 10.1016/0301-679X(82)90089-5
22 Li W B, Chen M H, Wang C, et al. Preparation and oxidation behavior of SiO2-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy [J]. Surf. Coat. Technol., 2013, 218: 30
doi: 10.1016/j.surfcoat.2012.12.022
23 Chen G Q, Li N N, Fu X S, et al. Preparation and characterization of a sodium polyacrylate/sodium silicate binder used in oxidation resistant coating for titanium alloy at high temperature [J]. Powder Technol., 2012, 230: 134
doi: 10.1016/j.powtec.2012.07.020
24 Xie W J, Weng L T, Chan C K, et al. Reactions of SO2 and NH3 with epoxy groups on the surface of graphite oxide powder [J]. Phys. Chem. Chem. Phys., 2018, 20: 6431
doi: 10.1039/C8CP00524A
25 Xia W C, Yang J G, Liang C. Investigation of changes in surface properties of bituminous coal during natural weathering processes by XPS and SEM [J]. Appl. Surf. Sci., 2014, 293: 293
doi: 10.1016/j.apsusc.2013.12.151
26 Zhang Z G, Cao Y J, Ma Z L, et al. Impact of calcium and gypsum on separation of scheelite from fluorite using sodium silicate as depressant [J]. Sep. Purif. Technol., 2019, 215: 249
doi: 10.1016/j.seppur.2019.01.021
27 Li B F, Trueman B F, Rahmanet M S, et al. Understanding the impacts of sodium silicate on water quality and iron oxide particles [J]. Environ. Sci.: Water Res. Technol., 2019, 5: 1360
doi: 10.1039/C9EW00257J
28 Nesbitt H W, Bancroft G M, Henderson G S, et al. Bridging, non-bridging and free (O2-) oxygen in Na2O-SiO2 glasses: an X-ray Photoelectron Spectroscopic (XPS) and Nuclear Magnetic Resonance (NMR) study [J]. J. Non-Cryst. Solids, 2011, 357: 170
doi: 10.1016/j.jnoncrysol.2010.09.031
29 Fan Q, Zhou D L, Yang L, et al. Study on the oxidation resistance and tribological behavior of glass lubricants used in hot extrusion of commercial purity titanium [J]. Colloids Surf., 2018, 559A: 251
30 Pham T S, Tieu A K, Wan S H, et al. Oxidative and frictional behavior of a binary sodium borate-silicate composite in high-temperature lubricant applications [J]. Ind. Eng. Chem. Res., 2020, 59: 2921
doi: 10.1021/acs.iecr.9b05767
31 Gao Q S, Yan H, Qin Y, et al. Self-lubricating wear resistant composite coating Ti-Ni+TiN+MoS2/TiS prepared on Ti-6Al-4V alloy by laser cladding [J]. Chin. J. Mater. Res., 2018, 32: 921
31 高秋实, 闫 华, 秦 阳 等. 钛合金表面激光熔覆Ti-Ni+TiN+MoS2/TiS自润滑复合涂层 [J]. 材料研究学报, 2018, 32: 921
32 Li R, Wang H, Zhang T G, et al. Microstructure and properties of laser clad Ti2Ni+TiC+Al2O3+Cr x S y composite coating on Ti811 alloy [J]. Chin. J. Mater. Res., 2022, 36: 62
32 李 蕊, 王 浩, 张天刚 等. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+Cr x S y 复合涂层的组织和性能 [J]. 材料研究学报, 2022, 36: 62
33 Wang Q J, Hou T L, Wang W, et al. Tribological behavior of black phosphorus nanosheets as water-based lubrication additives [J]. Friction, 2022, 10: 374
doi: 10.1007/s40544-020-0465-1
34 Zhang H C, Qi X L. Super low friction characteristics initiated by running-in process in water-based lubricant for Ti-Alloy [J]. Chin. J. Mater. Res., 2021, 35: 349
34 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性 [J]. 材料研究学报, 2021, 35: 349
35 Wang L, Tieu A K, Hai G J, et al. Na2CO3 and graphene nanocomposites toward efficient lubrication [J]. Carbon, 2021, 177: 138
doi: 10.1016/j.carbon.2021.02.074
36 Wu J X, Xu H, Zhang J. Raman spectroscopy of graphene [J]. Acta Chim. Sin., 2014, 72: 301
36 吴娟霞, 徐 华, 张 锦. 拉曼光谱在石墨烯结构表征中的应用 [J]. 化学学报, 2014, 72: 301
doi: 10.6023/A13090936
37 Hao H H, Liu J B, Li K W, et al. Research progress on characterization of graphene structure by Raman spectroscopy [J]. J. Mater. Eng., 2018, 46(5): 1
37 郝欢欢, 刘晶冰, 李坤威 等. 拉曼光谱表征石墨烯结构的研究进展 [J]. 材料工程, 2018, 46(5): 1
38 Wang W, Zhang G L, Xie G X. Ultralow concentration of graphene oxide nanosheets as oil-based lubricant additives [J]. Appl. Surf. Sci., 2019, 498: 143683
doi: 10.1016/j.apsusc.2019.143683
39 Sampath S, Maydannik P, Ivanova T, et al. Structural and morphological characterization of Al2O3 coated macro-porous silicon by atomic layer deposition [J]. Thin Solid Films, 2016, 616: 628
doi: 10.1016/j.tsf.2016.09.026
40 Sakamoto K, Hayashi F, Sato K, et al. XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3 [J]. Appl. Surf. Sci., 2020, 526: 146729
doi: 10.1016/j.apsusc.2020.146729
41 Kong N, Zhang J M, Zhang J, et al. Chemical- and mechanical-induced lubrication mechanisms during hot rolling of titanium alloys using a mixed graphene-incorporating lubricant [J]. Nanomaterials, 2020, 10: 665
doi: 10.3390/nano10040665
42 Gao S H, Liu M, Pang X J, et al. Fabrication and properties of super-hydrophobic composite coatings [J]. Chin. J. Mater. Res., 2018, 32: 502
doi: 10.11901/1005.3093.2017.391
42 高硕洪, 刘 敏, 庞晓军 等. 超疏水复合涂层的制备和性能研究 [J]. 材料研究学报, 2018, 32: 502
doi: 10.11901/1005.3093.2017.391
43 Lü B L, Cui Y, Gao X P, et al. Progress of tribological properties, lubrication mechanism and modification research on graphite [J]. Mater. Rev., 2015, 29A(19) : 60
43 吕柏林, 崔 跃, 高学朋 等. 石墨摩擦学性能、润滑机理及改性的研究进展 [J]. 材料导报, 2015, 29A(19) : 60
44 Han J C, Li Y, Gao P, et al. Friction performance of space machine with MoS2 solid lubrication coating in vacuum environment [J]. J. Mech. Eng., 2017, 53(11): 61
44 韩建超, 李 云, 高 鹏 等. 空间机构MoS2固体润滑真空摩擦特性研究 [J]. 机械工程学报, 2017, 53(11): 61
doi: 10.3901/JME.2017.11.061
[1] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[2] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[3] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[4] 李林龙, 杨丽琪, 薛伟海, 高禩洋, 王旭, 段德莉, 李曙. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023, 37(6): 408-416.
[5] 王春锦, 陈文革, 亢宁宁, 杨涛. 石墨烯调控3D打印功能钛的组织和性能[J]. 材料研究学报, 2023, 37(10): 791-800.
[6] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[7] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[8] 黄欢, 张迅韬, 杨尚科, 肖刘鑫, 张兆鑫, 严磊, 蔺海兰, 卞军, 陈代强. 氧化石墨烯/苯甲酸钠复合成核剂协同改性PA6纳米复合材料的性能[J]. 材料研究学报, 2022, 36(6): 416-424.
[9] 刘佳良, 徐东卫, 陈平. 磁性多孔rGO@Co/CoO复合材料的制备和吸波性能[J]. 材料研究学报, 2022, 36(5): 332-342.
[10] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[11] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[12] 曾强, 王荣超, 刘绮, 彭化南, 陈平. 磁功能化石墨烯改性环氧树脂及其复合材料的性能[J]. 材料研究学报, 2022, 36(12): 881-886.
[13] 胡瑞航, 杨贞, 雷齐俊, 李昕洋, 董子宇, 张晓彤, 范红玉, 牛金海. 氦离子辐照对钨纳米丝稳定性的影响[J]. 材料研究学报, 2022, 36(11): 850-854.
[14] 张宝超, 佟钰, 李宛鸿. 石墨烯纸拉花及其水泥基复合材料的制备和性能[J]. 材料研究学报, 2021, 35(9): 689-693.
[15] 侯静, 杨培志, 郑勤红, 杨雯, 周启航, 李学铭. 石墨/TiO2复合光催化剂的制备和性能[J]. 材料研究学报, 2021, 35(9): 703-711.