Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (4): 277-284    DOI: 10.11901/1005.3093.2019.391
  研究论文 本期目录 | 过刊浏览 |
耐磨铝基超疏水材料的制备及其动态冷凝行为
王芳1, 周宝玉1, 冯伟1,2(), 雷家柳1,2, 姜玉凤1, 王琦迪1,3
1.湖北理工学院材料科学与工程学院 黄石 435003
2.湖北理工学院 矿区环境污染控制与修复湖北省重点实验室 黄石 435003
3.昆明理工大学冶金与能源工程学院 昆明 650000
Preparation and Condensation Behavior of Wear Resistant Al-based Superhydrophobic Materials
WANG Fang1, ZHOU Baoyu1, FENG Wei1,2(), LEI Jialiu1,2, JIANG Yufeng1, WANG Qidi1,3
1.School of Materials Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
2.School of Materials Science and Engineering, Key Laboratory of Environmental Pollution Control and Restoration in Hubei Province, Huangshi 435003, China
3.Kunming University of Science and Technology, Faculty of Metallurgy and Energy, Kunming 650000, China
引用本文:

王芳, 周宝玉, 冯伟, 雷家柳, 姜玉凤, 王琦迪. 耐磨铝基超疏水材料的制备及其动态冷凝行为[J]. 材料研究学报, 2020, 34(4): 277-284.
Fang WANG, Baoyu ZHOU, Wei FENG, Jialiu LEI, Yufeng JIANG, Qidi WANG. Preparation and Condensation Behavior of Wear Resistant Al-based Superhydrophobic Materials[J]. Chinese Journal of Materials Research, 2020, 34(4): 277-284.

全文: PDF(20348 KB)   HTML
摘要: 

用水热法制备了铝基超疏水材料。SEM观测结果表明,这种材料表面有明显的微纳米复合结构;用动态摩擦试验机进行了循环摩擦实验,结果表明:这种材料的耐磨性能优异,2000次循环摩擦后样品表面变得略微平整,微米结构丢失,但是保留有大量ZnO纳米棒,仍保持超疏水特性。这种材料还具有良好的耐酸碱腐蚀能力。冷凝实验结果表明:冷凝液滴在微纳米复合结构中随机生成,有益的是凹槽中的冷凝液滴在长大和合并过程中逐渐脱离凹槽底部最终悬浮在粗糙结构的表面。这证实,冷凝液滴在样品表面保持Cassie态,为冷凝过程中频繁发生液滴合并自弹跳提供了条件。

关键词 材料表面与界面超疏水材料水热法耐磨性冷凝液滴合并自弹跳    
Abstract

Al-based superhydrophobic material with excellent wear resistance were prepared by hydrothermal method. SEM results reveal that there exists a distinct micro-nano hierarchical structure on the surface of the prepared material. After 2,000 cycles of friction test the surface of the prepared material became slightly smooth, but where a large number of ZnO nanorods still remained, which maintains superhydrophobic properties yet. Also, the Al-based superhydrophobic material has good resistance to acid- and alkali-corrosion. Condensation experiments shown that condensate droplets will be randomly generated on the micro-nano hierarchical structure. It is worth noting that the condensate droplets in the groove will gradually get out of the bottom of the groove during the growth and coalescence processes, and finally suspended on the surface. It confirmed that the condensate droplets remain in the Cassie state, which provides a guarantee for the frequent occurrence of self-propelled of condensate droplets.

Key wordssurface and interface    superhydrophobic materials    hydrothermal method    wear resistant    condensation    self-propelled of condensate droplets
收稿日期: 2019-08-15     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(No. 21603070);国家自然科学基金(No. 51704105);湖北省中央引导地方科技发展专项(No. 2019ZYYD006)
作者简介: 王芳,女,1994年生,本科生
SampleABC
Number/n033
Time/h313
(Contact angle) Average/(°)163.6164.2164.4
(Sliding angle) Average/(°)2.51.81.8
表1  水热反应主要参数对接触角和滚动角的影响
图1  样品B表面水滴的静态接触角和滚动角
图2  样品接触角随摩擦循环次数的变化
图3  样品摩擦前和2000次摩擦后表面形貌的对比
图4  样品接触角随浸渍时间的变化
图5  样品B摩擦前冷凝液滴从凹槽中“冒出”
图6  样品B摩擦前冷凝液滴的合并弹跳现象
图7  样品B摩擦前的冷凝循环过程
图8  样品B 2000次摩擦后的冷凝循环过程
[1] Zhang Q L, He M, Chen J, et al. Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets [J]. Chem. commun., 2013,49(40): 4516
doi: 10.1039/c3cc40592c pmid: 23575638
[2] Wang J, Shi X T, Feng L B, et al. Construction of long-lasting superhydrophobic copper surface and wear resistance and self-cleaning properties [J]. Mater. Rev., 2018, 32(24): 4314
[2] (王晶, 史雪婷, 冯利邦等. 长效超疏水铜表面的构建及耐磨性和自清洁性能 [J]. 材料导报, 2018, 32(24): 4314)
[3] Yao J P, Lei S, Wang F J, et al. Preparation and corrosion resistance of superhydrophobic cuprous oxide surface [J]. Chin. J. Mater. Res., 2013, 27(06): 647
[3] (尧军平, 雷胜, 王法军等. 超疏水氧化亚铜表面的制备和耐腐蚀性能 [J]. 材料研究学报, 2013, 27(06): 647)
[4] Wang J, Kong Q G, Zhang L, et al. Preparation and properties of super-double-surface coating modified by fluorinated low surface energy [J]. Surface Technology, 2018, 47(11): 66
[4] (王静, 孔庆刚, 张龙等. 含氟低表面能修饰的超双疏涂层制备及其性能 [J]. 表面技术, 2018, 47(11): 66)
[5] Zhan X L, Jin B Y, Zhang Q H, et al. Design and applications of multifunctional super-wetting materials [J]. Progress in Chemistry, 2018, 30(1): 87
doi: 10.1039/c7sc01055a pmid: 28989639
[6] Sojoudi H, Wang M, Boscher N D, et al. Durable and scalable icephobic surfaces: similarities and distinctions from superhydrophobic surfaces [J]. Soft Matter, 2016, 12(7): 1938
doi: 10.1039/c5sm02295a pmid: 26757856
[7] Weng T Y, Lai D L, Li X C, et al. Preparation and property of superhydrophobic phosphate-cerium composite coatings on hot-dip galvanizing carbon steel [J]. Chin. J. of Mater. Res., 2018, 32(11): 801
[7] (翁天宇, 赖德林, 李晓聪等. 热浸镀锌层磷酸盐-铈盐复合处理制备超疏水膜层研究 [J]. 材料研究学报, 2018, 32(11): 801)
doi: 10.11901/1005.3093.2018.173
[8] Chen N N, Wang Y H, Zhong L, et al. Anticorrosion performance of super-hydrophobic complex film of graphene/stearic acid on AZ91 Mg-alloy [J]. Chin. J. of Mater. Res., 2017, 31(10): 751
[8] (陈宁宁, 王燕华, 钟莲等. 石墨烯/硬脂酸超疏水复合膜层的防腐性能 [J]. 材料研究学报, 2017, 31(10): 751)
[9] Cheng Y T, Rodak D E. Is the lotus leaf superhydrophobic [J]. Appl. Phys. Lett., 2005, 86(14): 144101
doi: 10.1063/1.1895487
[10] Cheng Y T, Rodak D E, Angelopoulos A, et al. Microscopic observations of condensation of water on lotus leaves [J]. Appl. Phys. Lett., 2005, 87(19): 194112
[11] Chen C H, Cai Q G, Tsai C L,et al. Dropwise condensation on superhydrophobic surfaces with two-tier roughness [J]. Appl. Phys. Lett., 2007, 90(17): 173108
doi: 10.1021/acsnano.5b05607 pmid: 26565420
[12] Boreyko J B, Chen C H. Self-propelled dropwise condensate on superhydrophobic surfaces [J]. Phys. Rev. Lett., 2009, 103(18): 184501
doi: 10.1103/PhysRevLett.103.184501 pmid: 19905808
[13] Zhang W, Lin G H, Li J, et al. Fabrication of biomimetic polymer nanocone films with condensate microdrop self-removal func-tion [J]. Adv. Mater. Interfaces., 2015, 2(12): 1500238
[14] Mulroe M D, Srijanto B R, Farzad Ahmadi S, et al. Tuning superhydrophobic nanostructures to enhance jumping-droplet condensation [J]. Acs Nano., 2017, 11(8): 8499
doi: 10.1021/acsnano.7b04481 pmid: 28719740
[15] Feng J, Pang Y C, Qin Z Q, et al. Why condensate drops can spontaneously move away on some superhydrophobic surfaces but not on others [J]. Acs Appl. Mater. & Inter., 2012, 4(12): 6618
doi: 10.1021/am301767k pmid: 23153202
[16] Feng J, Qin Z Q, Yao S H. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces [J]. Langmuir, 2012, 28(14): 6067
doi: 10.1021/la300609f pmid: 22424422
[17] Shin B S, Lee K R, Moon M W, et al. Extreme water repellency of nanostructured low-surface-energy non-woven fabrics [J]. Soft Matter, 2012, 8(6): 1817
[18] Ko, T J, Her E K, Shin B G, et al. Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio nanostructures [J]. Carbon, 2012, 50(14): 5085
[19] Zhang D G, Li L H, Wu Y L,et al. One-step method for fabrication of bioinspired hierarchical superhydrophobic surface with robust stability [J]. Appl. Surf. Sci., 2019, 473: 493
doi: 10.1166/jnn.2020.16912 pmid: 31383101
[20] Li W M,Peng C Y,Wu B R,Carbon fiber particle reinforced CeO2/PMMA/PVDF superhydrophobic composite coating and its wear resistance [J]. Mater. Rev.,2017, 31(S1): 334
[20] (李为民, 彭超义, 吴彬瑞. 碳纤维颗粒增强CeO2/PMMA/PVDF超疏水复合涂层及其耐磨性能 [J]. 材料导报, 2017, 31(S1): 334)
[21] Fan X L, Wang W L, Su J, et al. Mechanically robust superhydrophobic mesh for oil/water separation by a seed free hydrothermal method [J]. Mater. Res. Express., 2019, 6(1): 015026
doi: 10.1088/1748-6041/10/1/015026 pmid: 25729882
[22] Hu L Y, Feng W, Li W, et al. Preparation of superhydrophobic anti-icing zinc oxide surface by hydrothermal method [J]. Journal of hubei polytechiv university, 2016, 32(05): 46
[22] (胡良云, 冯伟, 李文等. 水热法制备超疏水防冰氧化锌表面 [J]. 湖北理工学院学报, 2016, 32(05): 46)
[23] Xu S Y, Zhao Y Y, Song Q S, et al. Study on hydrothermal synthesis and hydrophobic properties of stainless steel based ZnO thin films [J] J. synthetic. cryst., 2018, 47(08): 1560
[23] (徐姝颖, 赵莹莹, 宋秋实等. 不锈钢基ZnO薄膜的水热合成及其疏水性能研究 [J]. 人工晶体学报, 2018, 47(08): 1560)
[24] Yang T T, Liu C S, Zhang D J, et al. Preparation and durability of zinc oxide superhydrophobic films [J]. Mater. Prot., 2017, 50(04): 30
[24] (杨亭亭, 刘长松, 张德建等. 氧化锌超疏水薄膜的制备及其耐久性 [J]. 材料保护, 2017, 50(04): 30)
[25] Guo Y G, Zhang X, Geng T, et al. Research progress in durability of superhydrophobic surfaces [J]. China Surface Engineering, 2018, 31(05): 63
[25] (郭永刚, 张鑫, 耿铁等. 超疏水表面耐久性能的研究进展 [J]. 中国表面工程, 2018, 31(05): 63)
[26] Dai W Z. Preparation technology and strengthening mechanism of wear-resistant superhydrophobic coating [D]. Southeast University, 2018
[26] (戴文哲. 耐磨超疏水涂层制备技术及强化机制研究 [D]. 南京: 东南大学, 2018)
[27] Sharma C S, Combe J, Giger M, et al. Growth rates and spontaneous navigation of condensate droplets through randomly structured textures [J]. Acs Nano., 2017, 11(2): 1673
doi: 10.1021/acsnano.6b07471 pmid: 28170223
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 田志刚, 李新梅, 秦忠, 王晓辉, 刘伟斌, 黄永. CoCrFeNiTi x 高熵合金涂层的显微组织和耐磨性能[J]. 材料研究学报, 2023, 37(3): 219-227.
[5] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[6] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[7] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[8] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[9] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[10] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[11] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[12] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[13] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[14] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[15] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.