Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (5): 361-370    DOI: 10.11901/1005.3093.2018.470
  研究论文 本期目录 | 过刊浏览 |
纤维预热温度对连续Al2O3f/Al复合材料力学性能的影响
胡银生,余欢,徐志锋(),蔡长春,聂明明
南昌航空大学 轻合金加工科学与技术国防重点学科实验室 南昌 330063
Effect of Fiber Preheating Temperature on Mechanical Properties of Continuous Al2O3f/Al Composites
Yinsheng HU,Huan YU,Zhifeng XU(),Changchun CAI,Mingming NIE
National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
引用本文:

胡银生,余欢,徐志锋,蔡长春,聂明明. 纤维预热温度对连续Al2O3f/Al复合材料力学性能的影响[J]. 材料研究学报, 2019, 33(5): 361-370.
Yinsheng HU, Huan YU, Zhifeng XU, Changchun CAI, Mingming NIE. Effect of Fiber Preheating Temperature on Mechanical Properties of Continuous Al2O3f/Al Composites[J]. Chinese Journal of Materials Research, 2019, 33(5): 361-370.

全文: PDF(25197 KB)   HTML
摘要: 

选用Nextel610型Al2O3纤维为增强体、ZL210A连续氧化铝合金为基体,采用真空压力浸渗法制备纤维增强铝基复合材料(Al2O3f/Al),纤维的体积分数为40%,预热温度分别为500、530、560和600℃,研究了纤维预热温度对Al2O3f/Al复合材料的微观组织、纤维损伤和力学性能的影响。结果表明:随着纤维预热温度的提高复合材料的致密度随之提高,最大达到99.2%,材料的组织缺陷最少,纤维的分布均匀;随着纤维预热温度的提高从复合材料中萃取出来的Al2O3纤维的拉伸强度不断降低,纤维预热温度为600℃的复合材料中Al2O3纤维的拉伸强度仅为1150 MPa,纤维表面粗糙,有大尺寸附着物。纤维的预热温度对Al2O3f/Al复合材料的拉伸强度有显著的影响。预热温度为500、530、560和600℃的复合材料其拉伸强度分别对应于298、465、498和452 MPa。组织缺陷、纤维损伤和界面结合强度,是影响连续Al2O3f/Al复合材料强度的主要因素。

关键词 金属基复合材料纤维预热温度真空压力浸渗界面反应纤维损伤力学性能    
Abstract

The composite materials of continuous Al2O3f/ZL210A alloy with 40% of Nextel610-Al2O3 fiber were fabricated via vacuum-pressure infiltration process, while the fiber was preheated at temperatures of 500, 530, 560 and 600℃, respectively before pressure-infiltration. The effect of fiber preheating temperature on the microstructure and mechanical properties of the composites of continuous Al2O3f/ZL210A alloy was investigated. The results show that the density of composites increases with the increase of fiber preheating temperature; Among others, the composite of continuous Al2O3f/ZL210A made out of the fiber Al2O3f preheated at 600℃ presents the highest density of 99.2%; The tensile strength of Al2O3 fibers extracted from the prepared composites depends significantly on their preheating temperature, namely the higher preheating temperature may results in the lower tensile strength, as an example, the extracted Al2O3 fiber, which was subjected to pre-heat treatment at 600 C, presents a rough surface morphology with tensile strength of only 1150 MPa; The fiber preheating temperature has a significant effect on the tensile strength of continuous Al2O3f/Al composites. Indeed, the composites fabricated with Al2O3 fibers, which were preheated at 500, 530, 560 and 600℃ respectively, possess corresponding tensile strength of 298, 465, 498 and 452 MPa. The existed defects and damages on fibers, as well as the interfacial reaction between fibers and the matrix may be the main factors affecting the strength of the composites of continuous Al2O3f/ZL210A alloy.

Key wordsmetal matrix composites    fiber preheating temperature    vacuum pressure infiltration    interface reaction    fiber damage    mechanical properties
收稿日期: 2018-07-24     
ZTFLH:  TB331  
基金资助:国家自然科学基金(51365043);江西省自然科学基金(20151BAB206004)
作者简介: 胡银生,男,1994年生,硕士生
Fiber model

Density

/g·cm-3

Monofilament diameter/μm

Tensile strength

/GPa

Young's modulus

/GPa

Elongation

/%

Nextel6103.7510~123.2~3.5380~4000.5
表1  Nextel610型Al2O3纤维的性能指标
Alloy codeMass fraction/%
SiMgCuMnTiZnOthersAl
ZL210A0.20.054.5~5.10.35~0.80.15~0.350.1Cd/Zr/FeMargin
表2  基体铝合金的化学成分
图1  真空压力浸渗装置和模具示意图
图2  Al2O3f/Al复合材料的拉伸试样示意图
图3  纤维的拉伸试样
图4  不同预热温度Al2O3f/Al复合材料的平均致密度
图5  不同预热温度的连续Al2O3f/ZL210A复合材料的微观组织
图6  不同状态下Al2O3纤维的表面形貌
图7  连续Al2O3f/Al复合材料中主要合金元素的分布
图8  连续Al2O3f/Al复合材料的XRD衍射图谱
图9  连续Al2O3f/Al复合材料界面层的形貌
图10  不同状态Al2O3纤维的拉伸强度
图11  基体合金及其复合材料的拉伸强度
图12  不同预热温度的连续Al2O3f/ZL210A拉伸断口的形貌
[1] MudraE, StreckovaM, KovalcikovaA, et al. Preparation of Alumina Fibers by Needle-Less Electrospinning [J]. Materials Science Forum, 2017, 891: 478
[2] QiaoJ, LiuH Y, CuiH L, et al. Preparation and application of continuous alumina fibers [J]. China Ceramics, 2015, 51(8): 1
[2] 乔 健, 刘和义, 崔宏亮等. 连续氧化铝纤维的制备及应用 [J].中国陶瓷, 2015, 51(8): 1)
[3] LiuM T, CaiX A, LiG Q. Microstructure and thermal properties of high performance reinforced matrix composites [J]. China Journal of nonferrous metals, 2013, 23 (4): 1040
[3] 刘玫潭, 蔡旭升, 李国强. 高性能增强基复合材料的显微组织和热性能 [J].中国有色金属学报, 2013, 23(4): 1040)
[4] LiD X, ZhouZ X, FanZ Y. The Al2O3p/Al particulate reinforced aluminium matrix composites with interfacial compatibility prepared by matrix alloying [J]. Journal of Metals, 2002, 38(6): 602
[4] 李斗星, 周朝霞, 樊中云. 通过基体合金化制备界面相容的Al2O3p/Al颗粒增强铝基复合材料 [J]. 金属学报, 2002, 38(6): 602)
[5] ZhaoY T, LinW L, QieX Z, et al. Ultrasonic chemical in situ synthesis of nano Al2O3/6063Al composites and high temperature creep properties[J]. Acta Materiae Compositae Sinica, 2015, 32(5): 1399
[5] 赵玉涛, 林伟立, 怯喜周等. 超声化学原位合成纳米Al2O3/6063Al复合材料组织及高温蠕变性能 [J].复合材料学报, 2015, 32(5): 1399)
[6] IrezA B, BayraktarE, MiskiogluI. Mechanical Characterization of EpoxyScrap Rubber Based Composites Reinforced with Alumina Fibers [J]. 2018
[7] LiG R, WangF F, ZhengR, et al. Mechanical properties and toughening mechanism of solid aluminium matrix composites treated by pulsed high magnetic field [J]. Chinese Journal of Materials Research, 2016, 30(10): 745
[7] 李桂荣, 王芳芳, 郑 瑞等. 脉冲强磁场处理固态铝基复合材料的力学性能和强韧化机制 [J]. 材料研究学报, 2016, 30(10): 745)
[8] QiL H, MaY Q, ZhouJ M, et al. Effect of fiber orientation on mechanical properties of 2D-Cf/Al composites by liquid-solid extrusion following Vacuum infiltration technique [J]. Materials Science and Engineering A. 2015(625): 343
[9] XueL Y, WangF C, WangY W, et al. Influence of alloy elements on the mechanical properties of SiC/Al double connected composites [J]. Rare Metal Materials and Engineering, 2014, 43(8): 1908
[9] 薛辽豫, 王富耻, 王扬卫等. 合金元素对SiC/Al双连通复合材料力学性能的影响 [J]. 稀有金属材料与工程, 2014, 43(8): 1908)
[10] LiuJ, QiL H, ZhouJ M, et al. Prediction of surface damage of Al2O(3sf)/2A12 aluminum matrix composites by liquid infiltration extrusion [J]. Chinese Journal of Materials Research, 2009, 23(06): 616
[10] 刘 健, 齐乐华, 周计明等. 液态浸渗挤压Al2O(3sf)/2A12铝基复合材料表面损伤的预测 [J]. 材料研究学报, 2009, 23(06): 616)
[11] BaiP C, PeiJ, DaiX J, et al. HRTEM study on interface structure of Al2O3/2024Al composites [J]. Rare Metal Materials and Engineering, 2009, 38(1): 1
[11] 白朴存, 裴 杰, 代雄杰等. Al2O3/2024Al复合材料界面结构的HRTEM研究[J].稀有金属材料与工程, 2009, 38(1): 1)
[12] NieM M, XuZ F, XuY J, et al. Effect of matrix alloy on interface and tensile strength of continuous SiCf/Al composite [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(3): 593
[12] 聂明明, 徐志锋, 徐燕杰等. 基体合金对连续SiCf/Al复合材料界面及拉伸强度的影响 [J]. 中国有色金属学报, 2016, 26(3): 593)
[13] XuH, ZhaoY, RenS B, et al. Microstructure and Tensile Properties of Vacuum Pressure Infiltration and Hot Pressure Sintering (SiCp+Al2O(3f))/2024Al Composites [J]. Materials Report, 2018, 32(06): 951
[13] 许 慧, 赵 洋, 任淑彬等. 真空压力熔渗与热压烧结制备(SiCp+Al2O(3f))/2024Al复合材料的组织与拉伸性能分析 [J]. 材料导报, 2018, 32(06): 951)
[14] YiZ B, FengL B, HaoX Z, et al. The effect of surface treatment on the properties of carbon fibers and their composites [J]. Chinese Journal of Materials Research, 2015, 29(01): 67
[14] 易增博, 冯利邦, 郝相忠等. 表面处理对碳纤维及其复合材料性能的影响 [J]. 材料研究学报, 2015, 29(01): 67)
[15] McWilliamsB, DibelkaJ, YenC F. Multi scale modeling and characterization of inelastic deformation mechanisms in continuous fiber and 2D woven fabric reinforced metal matrix composites [J]. Materials Science and Engineering A. 2014(618): 142
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[11] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[12] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[13] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.
[15] 刘东洋, 童广泽, 高文理, 王卫凯. 2060铝锂合金厚板的各向异性[J]. 材料研究学报, 2023, 37(3): 235-240.