|
|
分级结构类球形MgFe2O4/C复合材料的制备及其储锂性能 |
高荣贞1,2, 李晓冬3, 刘文凤4, 尹艳红1,2( ), 杨书廷1,2 |
1 动力电源及关键材料国家地方联合工程实验室 新乡 453007 2 河南师范大学化学化工学院 新乡 453007 3 洛阳师范学院化学化工学院 洛阳 471022 4 河南电池研究院 新乡 453007 |
|
Synthesis and Li-storage Performance of Hierarchical Spheroid Composites of MgFe2O4/C |
Rongzhen GAO1,2, Xiaodong LI3, Wenfeng LIU4, Yanhong YIN1,2( ), Shuting YANG1,2 |
1 National & Local Joint Engineering Laboratory for Motive Power and Key Materials, Xinxiang 453007, China; 2 School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China 3 College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China 4 Henan Battery Research Institute, Xinxiang 453007, China |
引用本文:
高荣贞, 李晓冬, 刘文凤, 尹艳红, 杨书廷. 分级结构类球形MgFe2O4/C复合材料的制备及其储锂性能[J]. 材料研究学报, 2018, 32(9): 713-720.
Rongzhen GAO,
Xiaodong LI,
Wenfeng LIU,
Yanhong YIN,
Shuting YANG.
Synthesis and Li-storage Performance of Hierarchical Spheroid Composites of MgFe2O4/C[J]. Chinese Journal of Materials Research, 2018, 32(9): 713-720.
[1] | Dunn B, Kamath H, Tarascon J M.Electrical energy storage for the grid: a battery of choices[J]. Science, 2011, 334(6058): 928 | [2] | Armand M, Tarascon J M.Building better batteries[J]. Nature, 2008, 451: 652-7 | [3] | Ellis B L, Knauth P, Djenizian T.Three-dimensional self-supported metal oxides for advanced energy storage[J]. Adv. Mater., 2014, 26: 3368 | [4] | Yuan C, Wu H B, Xie Y, et al.Mixed transition-metal oxides: design, synthesis, and energy-related applications[J]. Angew.Chem., 2014, 53: 1488 | [5] | Yin Y H, Liu W F, Huo N N, et al.High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing[J]. Chem. Eng. J., 2017, 307: 999 | [6] | Huo N N, Yin Y H, Liu W F, et al.Facile synthesis of MgFe2O4/C composites as anode materials for lithium-ion batteries with excellent cycling and rate performance[J]. New J. Chem., 2016, 40: 7068 | [7] | Yin Y H, Huo N N, Liu W F, et al.Hollow spheres of MgFe2O4 as anode material for lithium-ion batteries[J]. Scripta Mater., 2016, 110: 92 | [8] | Hu P, Yu L, Zuo A, et al.Fabrication of Monodisperse Magnetite Hollow Spheres[J]. J. Phys. Chem. C, 2009, 113: 900 | [9] | Guo X, Lu X, Fang X, et al.Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries[J]. Electrochem. Commun., 2010, 12: 847 | [10] | Gong C, Bai Y J, Qi Y X, et al.Preparation of carbon-coated MgFe2O4 with excellent cycling and rate performance[J]. Electrochim. Acta, 2013, 90: 119 | [11] | Yao L, Hou X, Hu S, et al.Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries[J]. J. Power Sources, 2014, 258: 305 | [12] | Kim J, Kim Y, Noh Y, et al.Formation of carbon-coated ZnFe2O4 nanowires and their highly reversible lithium storage properties[J]. Rsc Adv., 2014, 4: 27714 | [13] | Yin Y H, Liu W F, Huo N N, et al.Synthesis of Vesicle-Like MgFe2O4/Graphene 3D Network Anode Material with Enhanced Lithium Storage Performance[J]. Acs Sustain. Chem. Eng., 2017, 5: 563 | [14] | Sivakumar N, Narayanasamy A, Greneche J M, et al.Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite[J]. J. Alloys Compd., 2010, 504: 395 | [15] | Jia C J, Liu Y, Schwickardi M, et al.Small gold particles supported on MgFe2O4 nanocrystals as novel catalyst for CO oxidation[J]. Appl. Catal. A-Gen., 2010, 386: 94 | [16] | Liu Y L, Liu Z M, Yang Y, et al.Simple synthesis of MgFe2O4 nanoparticles as gas sensing materials[J]. Sens. Actuators, B-Chem., 2005, 107: 600 | [17] | Rai A K, Thi T V, Gim J, et al.Combustion synthesis of MgFe2O4/graphene nanocomposite as a high-performance negative electrode for lithium ion batteries[J]. Mater. Charact., 2014, 95: 259 | [18] | Pan Y, Zhang Y, Wei X, et al.MgFe2O4 nanoparticles as anode materials for lithium-ion batteries[J]. Electrochim. Acta, 2013, 109: 89 | [19] | Liu H W, Liu H F.Synthesis of Nanosize Quasispherical MgFe2O4 and Study of Electrochemical Properties as Anode of Lithium Ion Batteries[J]. J. Electron. Mater., 2014, 43: 2553 | [20] | Qiao H, Luo L, Chen K, et al.Electrospun synthesis and lithium storage properties of magnesium ferrite nanofibers[J]. Electrochim. Acta, 2015, 160: 43 | [21] | Zhang Z, Ren W, Wang Y, et al.Mn0.5Co0.5Fe2O4 nanoparticles highly dispersed in porous carbon microspheres as high performance anode materials in Li-ion batteries[J]. Nanoscale, 2014, 6: 6805 | [22] | Hou M, Guo S, Liu J, et al.Preparation of lithium-rich layered oxide micro-spheres using a slurry spray-drying process[J]. J. Power Sources, 2015, 287: 370 | [23] | Park G D, Cho J S, Kang Y C.Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect[J]. Nanoscale, 2015, 7: 16781 | [24] | Sun X R, Zhang H W, Zhou L, et al.Polypyrrole-Coated Zinc Ferrite Hollow Spheres with Improved Cycling Stability for Lithium-Ion Batteries[J]. Small, 2016, 12: 3732 | [25] | Fan J L, Chen Y B, Han Y, et al.Preparation and sintering behavior of ultra-fine Mo-30Cu composite powders[J]. Chin. J. Mater. Res., 2009, 23(4): 363(范景莲, 陈玉柏, 韩勇等. 超细Mo-30Cu复合粉末的烧结行为[J]. 材料研究学报, 2009, 23(4): 363) | [26] | Wang L, Jiang F H, Gong H B, et al.Synthesis and properties of well-dispersive and spherical YAG:Ce3+ phosphors[J]. Chin. J. Mater. Res., 2012, 26(4): 414(王磊, 姜奉华, 巩海波等. 易分散球形YAG:Ce3+荧光粉的制备和性能[J]. 材料研究学报, 2012, 26(4): 414) | [27] | Xia H, Wan Y, Yuan G, et al.Fe3O4/carbon core-shell nanotubes as promising anode materials for lithium-ion batteries[J]. J. Power Sources, 2013, 241: 486 | [28] | Wang C, Yin L, Dong X, et al.Uniform Carbon Layer Coated Mn3O4 Nanorod Anodes with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries[J]. ACS Appl. Mat. Interfaces, 2012, 4: 1636 | [29] | Gao S, Geng K.Facile construction of Mn3O4 nanorods coated by a layer of nitrogen-doped carbon with high activity for oxygen reduction reaction[J]. Nano Energy, 2014, 6: 44 | [30] | Zhou G, Wang D-W, Li F, et al.Graphene-Wrapped Fe3O4Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries[J]. Chem. Mater., 2010, 22: 5306 | [31] | Zhu Z, Wang S, Du J, et al.Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries[J]. Nano Lett., 2014, 14: 153-7 | [32] | Su Y, Zhu Y, Jiang H, et al.Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Nanoscale, 2014, 6: 15080-9 | [33] | Cao L, Wang R, Xu Z, et al.Constructing Mn-O-C bonds in Mn3O4/Super P composite for superior performance in Li-ion battery[J]. J. Electroanal. Chem., 2017, 798: 1 | [34] | Kang Q, Cao L, Li J, et al.Super P enhanced CoO anode for lithium-ion battery with superior electrochemical performance[J]. Ceram. Int., 2016, 42: 15920 | [35] | Li J, Shi X, Fang J, et al.Facile Synthesis of WS2 Nanosheets-Carbon Composites Anodes for Sodium and Lithium Ion Batteries[J]. Chemnanomat, 2016, 2: 997 | [36] | Yuan S M, Li J X, Yang L T, et al.Preparation and Lithium Storage Performances of Mesoporous Fe3O4@C Microcapsules[J]. ACS Appl. Mat. Interfaces, 2011, 3: 705 | [37] | Lei C, Han F, Sun Q, et al.Confined nanospace pyrolysis for the fabrication of coaxial Fe3O4@C hollow particles with a penetrated mesochannel as a superior anode for Li-ion batteries[J]. Chemistry, 2014, 20: 139 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|