Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (9): 655-661    DOI: 10.11901/1005.3093.2017.522
  本期目录 | 过刊浏览 |
B和Ru共改性对TiO2纳米管阵列的结构和光催化性能的影响
王竹梅, 朱晓玲, 李月明(), 廖润华, 沈宗洋, 左建林
景德镇陶瓷大学中国轻工业功能陶瓷材料重点实验室 江西省能量存储与转换陶瓷材料工程实验室 景德镇 333403
Effect of B and Ru Co-modification on Structure and Photocatalytic Activity of TiO2 Nanotubes
Zhumei WANG, Xiaoling ZHU, Yueming LI(), Runhua LIAO, Zongyang SHEN, Jianlin ZUO
Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province; China National Light Industry Key Laboratory of Functional Ceramic Materials; Jingdezhen Ceramic Institute, Jingdezhen 333403, China
引用本文:

王竹梅, 朱晓玲, 李月明, 廖润华, 沈宗洋, 左建林. B和Ru共改性对TiO2纳米管阵列的结构和光催化性能的影响[J]. 材料研究学报, 2018, 32(9): 655-661.
Zhumei WANG, Xiaoling ZHU, Yueming LI, Runhua LIAO, Zongyang SHEN, Jianlin ZUO. Effect of B and Ru Co-modification on Structure and Photocatalytic Activity of TiO2 Nanotubes[J]. Chinese Journal of Materials Research, 2018, 32(9): 655-661.

全文: PDF(3650 KB)   HTML
摘要: 

采用阳极氧化法制备TiO2纳米管(TNTs),在电解液中添加NaBF4制备B改性的TiO2纳米管(B/TNTs),用湿浸渍法在TNTs和B/TNTs表面进行Ru改性制备了Ru/TNTs和Ru/B/TNTs。使用扫描电镜(FE-SEM)、能谱仪(EDS)、X射线衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)以及X射线光电子能谱(XPS)等手段对样品进行表征,以亚甲基蓝(MB)的光催化降解为目标反应评价样品的光催化活性。结果表明:掺入B/TNTs和Ru/B/TNTs样品中的B在TiO2晶格中形成B-O-Ti键;Ru/TNTs样品中的Ru以RuO2形式负载在TiO2纳米管表面;Ru/B/TNTs样品中的Ru少量进入TiO2晶格其余的负载在纳米管表面,大部分以Ru0形式存在,少量以RuO2形式存在。B掺杂使B/TNTs纳米管表面的羟基量增加、光学带隙能减小、光吸收阈值红移,使其光催化活性大幅提高;Ru/TNTs表面负载的RuO2并未增加TiO2纳米管表面羟基数量但是使光学带隙能减小、光吸收阈值红移,因此其光催化活性也有很大的提高;Ru/B/TNTs表面大量的Ru0使Ru/B/TNTs表面的羟基量减少,带隙能升高,光吸收阈值蓝移,其光催化活性低于Ru/TNTs或B/TNTs,与纯纳米管的性能相当。

关键词 材料表面与界面TiO2纳米管阵列阳极氧化B掺杂钌改性光催化活性    
Abstract

TiO2 nanotube arrays (TNTs) and boron doped TiO2 nanotube arrays (B/TNTs) on Ti-foil were prepared via anodic oxidation process in electrolyte composed of ethylene glycol, H2O and NH4F, without and with addition of NaBF4 respectively. Then TNTs and B/TNTs were further impregnated in Ru2+ containing solution to fabricate Ru-modified TiO2 nanotube arrays of Ru/TNTs and Ru/B/TNTs. The prepared products were characterized by multi-functional field-emission scanning electron microscope (FE-SEM), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD), UV-visible diffuse-reflectance spectrum (UV-Vis DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the products was examined via degradation test of methylene blue solution under visible light irradiation. Results show that B was incorporated into the TNTs lattice to form B-O-Ti bond and Ru was introduced to form RuO2 on the surface of Ru/TNTs. However, the main part of Ru formed as RuO2 deposited on the surface of B/TNTs. On the contrary, for Ru/B/TNTs there exist a large amount of Ru0 and small amount of RuO2 in the surface deposits and whilst very little Ru incorporated into the TNTs lattice; B-doping could effectively raise the the number of hydroxyl groups on the surface of B/TNTs, decrease the band gap energy and make the red shifting of absorption edges of the B/TNTs, which induce the significant increasing of the photocatalytic activity of B/TNTs. For the Ru/TNTs, the deposit of RuO2 could not lead to the increase of the number of hydroxyl groups on the surface of Ru/TNTs but would decrease the band gap energy and make the red-shifting of the absorption edges, eventually promoting the photocatalytic activity of Ru/TNTs to some extent. By comparison with B/TNTs, the surface of Ru/B/TNTs is rich in Ru0, which could increase the band-gap energy, thus induce the blue shifting of the absorption edges, which eventually induces a lower photocatalytic activity of Ru/B/TNTs (similar to pure TiO2 nanotubes).

Key wordssurface and interface in the materials    TiO2 nanotubes arrays    anodization    B-doped    ruthenium modified    photocatalytic activity
收稿日期: 2017-09-05     
ZTFLH:  O643  
基金资助:国家自然科学基金(51462010)和景德镇市科技计划(2017GYZD019-06)
作者简介:

作者简介 王竹梅,女,1971年生,副教授

图1  在不同条件下制备的样品的SEM照片和B0-R2、B6-R2样品的EDS谱线
图2  在不同条件下制备的样品的XRD图谱
图3  Ru/TNTs和Ru/B/TNTs样品表面C 1s和Ru 3d5/2的XPS能谱图
Sample Peak 1of Ru 3ds5/2(Ru0) Peak 2of Ru 3ds5/2(RuO2)
B.E/eV Ru % B.E/eV Ru %
B2-R2 280.18 0.33 282.08 0.02
B4-R2 280.18 0.35 282.08 0.06
B6-R2 280.18 0.33 282.08 0.12
B8-R2 280.18 0.29 282.08 0.09
表1  Ru/TNTs和Ru/B/TNTs样品表面Ru3d5/2的XPS谱峰参数
Sample Peak 1of O 1s (H-O-) Peak 2of O 1s (Ti-O-)
B.E/eV Content/% B.E/eV Content/%
B0 531.85 12.67 530.07 87.33
B0-R2 531.85 14.95 530.02 85.05
B4 531.89 16.31 530.02 83.69
B6 531.90 18.12 530.05 81.82
B4-R2 531.81 6.79 530.15 93.21
B6-R2 531.81 5.10 530.15 94.90
B8-R2 531.81 3.17 530.14 96.83
表2  Ru/B/TNTs样品表面O 1s的XPS谱峰参数
图4  样品表面O 1s的XPS能谱图
图5  各样品的Kubelka-Munk转换谱线和UV-vis漫反射图谱
Sample Eg/eV λ/nm Sample Eg/eV λ/nm ΔEg/eV
B0 3.24 383 B0-R2 3.19 389 -0.05
B2 3.18 390 B2-R2 3.26 380 0.08
B4 3.05 407 B4-R2 3.20 388 0.15
B6 3.01 412 B6-R2 3.15 394 0.14
B8 3.14 395 B8-R2 3.21 386 0.07
表3  Kubelka-Munk 计算的各样品光学带隙值和光吸收阈值
图6  在不同条件下制备的样品在可见光下的光催化活性
[1] Wu Q, Su Y F, Sun L, et al.Preparation and visible light photocatalytic activity of Fe-N codoped TiO2 nanotube arrays[J]. Acta Phys.-Chim. Sin. (in Chinese), 2012, 28(3): 635(吴奇, 苏钰丰, 孙岚等. Fe、N共掺杂TiO2纳米管阵列的制备及可见光光催化活性[J]. 物理化学学报. 2012, 28(3): 635)
[2] Asahi R, Morikawa T, Ohwaki T, et al.Visible light photocatalysis in nitrogen doped titanium oxides[J]. Science, 2001, 293(5528): 269
[3] Lin X X, Liu J, Fu D G. Photocatalysis reactivity in the visibel light of B-doped TiO2 nanotube arrays [J]. Adv. Mater. Res., 2013, 860-860: 907
[4] Wang X D, Blackford M, Prince K, et al.Preparation of boron-doped porous titania networks containing gold nanoparticles with enhanced visible-light photocatalytic activity[J]. ACS Appl. Mater. Interfaces, 2012, 4(1): 476
[5] Sun H Q, Wang S B, Ang H M, et al.Halogen element modified titanium dioxide for visible light photocatalysis[J]. Chem. Eng. J., 2010, 162(2): 437
[6] Xu J J, Ao Y H, Chen M D, et al.Low-temperature Preparation of Boron-doped Titania by Hydrothermal Method and its Photocatalytic Activity[J]. J. Alloys Compd., 2009, 484(1-2): 73
[7] Zaleska A, Grabowska E, Sobczak J W, et al.Photocatalytic Activity of Boron-modified TiO2 under Visible Light: The Effect of Boron Content, Calcination Temperature and TiO2 Matrix[J]. Appl. Catal. B: Environ, 2009, 89(3-4): 469
[8] Lu N, Zhao H M, Li J Y, et al.Characterization of boron-doped TiO2 nanotube arrays prepared by electrochemical method and its visible light activity[J]. Sep. Purif. Technol., 2008, 62(3): 668
[9] Ratnawati, Gunlazuardi J, Dewi E L, et al. Effect of NaBF4 addition on the anodic synthesis of TiO2 nanotube arrays photocatalyst for production of hydrogen from glycerol-water solution[J]. Int. J. Hydrogen Energy, 2014, 39(30): 16927
[10] Wang Z M, Zhu X L, LI Y M, et al.Effect of NaBF4 addition on the preparation of TiO2 nanotubes photocatalyst by anodic oxidation method[J]. Chin. J. Inorg. Chem., 2017, 33(6): 970(王竹梅, 朱晓玲, 李月明等. 添加NaBF4对阳极氧化法制备TiO2纳米管光催化剂的影响[J]. 无机化学学报. 2017, 33(6): 970)
[11] Uddin M T, Babot O, Thomas L, et al.New Insights into the Photocatalytic Properties of RuO2/TiO2 Mesoporous Heterostructures for Hydrogen Production and Organic Pollutant Photodecomposition[J]. J. Phys. Chem. C, 2015, 119(13): 7006
[12] Gopiraman M, Babu S G, Khatri Z, et al.Photodegradation of dyes by a novel TiO2/u-RuO2/GNS nanocatalyst derived from Ru/GNS after its use as a catalyst in the aerial oxidation of primary alcohols (GNS=graphene nanosheets)[J]. Reac. Kinet. Mech. Cat., 2015, 115: 759
[13] Wang Z M, Zhu X L, Li Y M, et al.Preparation and photocatalytic activity of RuO2 loaded TiO2 nanotubes[J]. J. Chin. Ceram. Soc., 2016, 44(10): 1494(王竹梅, 朱晓玲, 李月明等. RuO2 负载TiO2 纳米管的制备及其光催化性能[J]. 硅酸盐学报. 2016, 44(10): 1494)
[14] Wang Z M, Liu B, Xie Z X, et al.Preparation and photocatalytic properties of RuO2/TiO2 composite nanotube arrays[J]. Ceram. Int., 2016, 42: 13664
[15] Chu S.Z., Inoue S., Wada K., et al. Fabrication and photocatalytic characterizations of ordered nanoporous X-doped (X-N, C, S, Ru, Te, and Si) TiO2/Al2O3 films on ITO/glass[J]. Langmuir, 2005, 21(17): 8035
[16] Zhu X L, Wang Z M, Liu B, et al.Preparation and photocatalytic properties of Ru-doped TiO2 nano-powders by sol-gel method[J]. Mater. Rev.(in Chinese), 2016, 30: 52(朱晓玲, 王竹梅, 刘波等. 钌掺杂TiO2纳米粉体的制备及光催化性能研究[J]. 材料导报, 2016, 30: 52)
[17] Kim K S and Winograd N. X-ray photoelectron spectroscopic studies of ruthenium-oxygen surfaces[J]. J. Cata., 1974, 35: 66
[18] Mc Evoy A J and Gissler W. ESCA spectra and electronic properties of some ruthenium compounds[J]. Phys. Status Solidi A, 1982, 69(1): K91
[19] Shen J Y, Adnot A., Kaliaguine S.An ESCA study of the interaction of oxygen with the surface of ruthenium[J]. Appl. Surf. Sci., 1991, 51(1-2): 47
[20] Feng Q, Liu G B, Wang W L.X-ray Photoelectron spectroscopy of TiO2 thin films by chemical vapor deposition[J]. Optoelectronic Techology (in Chinese), 2003, 23(1): 35(冯庆, 刘高斌, 王万录. 化学气相沉积TiO2薄膜的XPS研究[J]. 光电子技术, 2003, 23(1): 35)
[21] Yu J G, Zhao X J. Zhao Q N, et al.XPS study on TiO2 photocatalytic thin film prepared by the sol-gel method[J]. Chin. J. Mater. Res., 2000, 14(2): 203(余家国, 赵修建, 赵青南等. TiO2光催化薄膜的XPS研究[J]. 材料研究学报, 2000, 14(2): 203)
[22] Uddin M T, Nicolas Y, Olivier C, et al.Preparation of RuO2/TiO2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations[J]. J. Phys. Chem. C, 2013, 117(42): 22098
[23] Maldotti A, Molinari A, Amadelli R.Photocatalysis with organized systems for the oxygenation of hydrocarbons by O2[J]. Chem. Rev., 2002, 102(10): 3811
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[15] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.