Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (7): 555-560    DOI: 10.11901/1005.3093.2017.515
  研究论文 本期目录 | 过刊浏览 |
可植入式医疗设备电池材料钒酸银的合成和性能
张瑾(), 王宁, 赵冲, 李佳星, 张天驰
西京学院 西安 710123
Synthesis and Performances of Silver Vanadate For Battery of Implantable Medical Devices
Jin ZHANG(), Ning WANG, Chong ZHAO, Jiaxing LI, Tianchi ZHANG
Xijing University, Xi'an 710123, China
引用本文:

张瑾, 王宁, 赵冲, 李佳星, 张天驰. 可植入式医疗设备电池材料钒酸银的合成和性能[J]. 材料研究学报, 2018, 32(7): 555-560.
Jin ZHANG, Ning WANG, Chong ZHAO, Jiaxing LI, Tianchi ZHANG. Synthesis and Performances of Silver Vanadate For Battery of Implantable Medical Devices[J]. Chinese Journal of Materials Research, 2018, 32(7): 555-560.

全文: PDF(6257 KB)   HTML
摘要: 

以一维K2V6O16·1.5H2O为前驱体模板,在室温进行原位反应制备一维α-AgVO3纳米结构,经低温热处理后得到了一维β-AgVO3纳米结构。采用X射线衍射,场发射扫描电镜,透射电镜,X射线光电子能谱等手段表征了α-AgVO3β-AgVO3样品,讨论了由前驱体到产物的生成机制。电化学性能的测试结果表明,β-AgVO3样品具有比β-AgVO3样品更高的倍率性能、循环性能和更小的电荷转移和锂离子迁移电阻,其原因是两者的晶体结构不同。

关键词 功能材料钒酸银一维纳米结构原位合成电化学    
Abstract

One-dimensional α-AgVO3 nanostructures were synthesized at ambient temperature via in-situ reaction process using one-dimensional K2V6O16·1.5H2O as precursor template. Then one-dimensional β-AgVO3 nanostructures were obtained through heat-treatment of the α-AgVO3 nanostructures at 300℃ for 3 h. The as-prepared α-AgVO3 and β-AgVO3 nanostructures were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS). Results of the electrochemical tests show that the β-AgVO3 nanostructures possess better rate capability and cycling performance, as well as smaller charge transfer and lithium ion transport resistance rather than that of the α-AgVO3 nanostructures.

Key wordsfunctional materials    silver vanadium oxides    1D nanostructure    in-situ synthesis    electrochemistry
收稿日期: 2017-05-15     
ZTFLH:  TB34  
基金资助:西京学院院基金(XJ140232)
作者简介:

作者简介 张 瑾,女,1983年生,讲师

图1  K2V6O161.5H2O前驱体、α-AgVO3产物和β-AgVO3产物的XRD图谱
图2  K2V6O161.5H2O前驱体、α-AgVO3及β-AgVO3样品的扫描电镜照片
图3  α-AgVO3及β-AgVO3样品的透射电镜、选区电子衍射及高分辨率透射电镜照片
图4  α-AgVO3样品的XPS总谱、样品中银元素的XPS图谱和样品中钒元素的XPS图谱
图5  一维α-AgVO3和β-AgVO3纳米结构电极的倍率性能图、在100 mAg-1电流密度下的循环性能图和电极阻抗谱
[1] Skarstad P M.Battery and capacitor technology for uniform charge time in implantable cardioverter-defibrillators[J]. J. Power Sources, 2004, 136(2): 263
[2] Ramasamy R P, Fenger C, Strange T, et al.Discharge characteristics of silver vanadium oxide cathodes[J]. J. Appl. Electrochem ., 2006, 36(4): 487
[3] Takeuchi K J, Leising R A, Palazzo M J, et al. Advanced lithium batteries for implantable medical devices: mechanistic study of SVO cathode synthesis [J]. J. Power Sources, 2003, 119-121: 973
[4] Liang S Q, Zhou J, Pan A Q, et al.Facile synthesis of β-AgVO3 nanorods as cathode for primary lithium batteries[J]. Mater. Lett ., 2012, 74: 176
[5] Han C H, Pi Y Q, An Q Y, et al.Substrate-assisted self-organization of radial β-AgVO3 nanowire clusters for high rate rechargeable lithium batteries[J]. Nano Lett ., 2012, 12(9): 4668
[6] Chen Z J, Gao S K, Li R H, et al.Lithium insertion in ultra-thin nanobelts of Ag2V4O11/Ag[J]. Electrochim. Acta, 2008, 53(28): 8134
[7] Zeng H, Wang Q, Rao Y Y.Ultrafine β-AgVO3 nanoribbons derived from α-AgVO3 nanorods by water evaporation method and its application for lithium ion batteries[J]. RSC Adv ., 2015, 5(4): 3011
[8] Liang S Q, Zhou J, Pan A Q, et al.Facile synthesis of Ag/AgVO3 hybrid nanorods with enhanced electrochemical performance as cathode material for lithium batteries[J]. J. Power Sources, 2013, 228: 178
[9] Wu Y Z, Zhu P N, Zhao X, et al.Highly improved rechargeable stability for lithium/silver vanadium oxide battery induced via electrospinning technique[J]. J. Mater. Chem. A, 2013, 1(3): 852
[10] Xu J, Hu C G, Xi Y, et al.Synthesis and visible light photocatalytic activity of β-AgVO3 nanowires[J]. Solid State Sci ., 2012, 14(4): 535
[11] Kittaka S, Matsuno K, Akashi H.Crystal structure of α-AgVO3 and phase relation of AgVO3[J]. J. Solid State Chem ., 1999, 142(2): 360
[12] Yu J G, Liu W, Yu H G, et al.A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity[J]. Cryst. Growth Des ., 2008, 8(3): 930
[13] Kong X G, Guo Z L, Wen P H, et al.Controllable synthesis and morphology evolution from two-dimensions to one-dimension of layered K2V6O16·nH2O[J]. Cryst Eng Comm, 2015, 17(20): 3777
[14] Song J M, Lin Y Z, Yao H B, et al.Superlong β-AgVO3 Nanoribbons: High yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties[J]. ACS Nano, 2009, 3(3): 653
[15] Zhang S Y, Li W Y, Li C S, et al.Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures[J]. J. Phys. Chem. B, 2006, 110(49): 24855
[16] Bao S J, Bao Q L, Li C M, et al.Synthesis and electrical transport of novel channel-structured β-AgVO3[J]. Small, 2007, 3(7): 1174
[17] Liang S Q, Zhou J, Zhang X L, et al.Hydrothermal synthesis of Ag/β-AgVO3 nanobelts with enhanced performance as a cathode material for lithium batteries[J]. Cryst Eng Comm, 2013, 15(46): 9869
[1] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[2] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[3] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[4] 刘艳云, 刘宇涛, 李万喜. rGO/PANI/MnO2 三元复合材料的制备和电化学性能[J]. 材料研究学报, 2022, 36(7): 552-560.
[5] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[6] 孟祥东, 甄超, 刘岗, 成会明. CuO纳米阵列结构光阴极的制备及其光电化学分解水的性能[J]. 材料研究学报, 2022, 36(4): 241-249.
[7] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[8] 姜海超, 安昊东, 杨静, 苏玉金, 李泽, 张滨. 原位生长在聚喹唑啉基共轭微孔聚合物表面的MoS2 及其析氢性能[J]. 材料研究学报, 2022, 36(12): 900-906.
[9] 王根, 李新梅, 卢彩彬, 王松臣, 柴程. CoCuFeNiTi高熵合金涂层的制备和性能研究[J]. 材料研究学报, 2021, 35(8): 561-571.
[10] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[11] 胡满银, 欧阳德来, 崔霞, 杜海明, 徐勇. 微波烧结原位合成TiC增强钛复合材料的性能[J]. 材料研究学报, 2021, 35(4): 277-283.
[12] 张少华, 李彦睿, 卫英慧, 刘宝胜, 侯利锋, 杜华云, 刘笑达. 多介质在碳钢腐蚀过程中的协同作用[J]. 材料研究学报, 2021, 35(10): 721-731.
[13] 夏傲, 赵晨鹏, 曾啸雄, 韩曰鹏, 谈国强. B掺杂MnO2的制备及其电化学性能[J]. 材料研究学报, 2021, 35(1): 36-44.
[14] 左成, 杜云慧, 张鹏, 王玉洁, 曹海涛. Al2O3包覆Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料的电化学性能[J]. 材料研究学报, 2020, 34(8): 621-627.
[15] 唐长斌, 王飞, 牛浩, 于丽花, 薛娟琴, 尹向阳. 引入电弧喷涂氮化锆中间层的钛基PbO2的电催化阳极性能[J]. 材料研究学报, 2020, 34(7): 527-534.