|
|
可植入式医疗设备电池材料钒酸银的合成和性能 |
张瑾( ), 王宁, 赵冲, 李佳星, 张天驰 |
西京学院 西安 710123 |
|
Synthesis and Performances of Silver Vanadate For Battery of Implantable Medical Devices |
Jin ZHANG( ), Ning WANG, Chong ZHAO, Jiaxing LI, Tianchi ZHANG |
Xijing University, Xi'an 710123, China |
引用本文:
张瑾, 王宁, 赵冲, 李佳星, 张天驰. 可植入式医疗设备电池材料钒酸银的合成和性能[J]. 材料研究学报, 2018, 32(7): 555-560.
Jin ZHANG,
Ning WANG,
Chong ZHAO,
Jiaxing LI,
Tianchi ZHANG.
Synthesis and Performances of Silver Vanadate For Battery of Implantable Medical Devices[J]. Chinese Journal of Materials Research, 2018, 32(7): 555-560.
[1] | Skarstad P M.Battery and capacitor technology for uniform charge time in implantable cardioverter-defibrillators[J]. J. Power Sources, 2004, 136(2): 263 | [2] | Ramasamy R P, Fenger C, Strange T, et al.Discharge characteristics of silver vanadium oxide cathodes[J]. J. Appl. Electrochem ., 2006, 36(4): 487 | [3] | Takeuchi K J, Leising R A, Palazzo M J, et al. Advanced lithium batteries for implantable medical devices: mechanistic study of SVO cathode synthesis [J]. J. Power Sources, 2003, 119-121: 973 | [4] | Liang S Q, Zhou J, Pan A Q, et al.Facile synthesis of β-AgVO3 nanorods as cathode for primary lithium batteries[J]. Mater. Lett ., 2012, 74: 176 | [5] | Han C H, Pi Y Q, An Q Y, et al.Substrate-assisted self-organization of radial β-AgVO3 nanowire clusters for high rate rechargeable lithium batteries[J]. Nano Lett ., 2012, 12(9): 4668 | [6] | Chen Z J, Gao S K, Li R H, et al.Lithium insertion in ultra-thin nanobelts of Ag2V4O11/Ag[J]. Electrochim. Acta, 2008, 53(28): 8134 | [7] | Zeng H, Wang Q, Rao Y Y.Ultrafine β-AgVO3 nanoribbons derived from α-AgVO3 nanorods by water evaporation method and its application for lithium ion batteries[J]. RSC Adv ., 2015, 5(4): 3011 | [8] | Liang S Q, Zhou J, Pan A Q, et al.Facile synthesis of Ag/AgVO3 hybrid nanorods with enhanced electrochemical performance as cathode material for lithium batteries[J]. J. Power Sources, 2013, 228: 178 | [9] | Wu Y Z, Zhu P N, Zhao X, et al.Highly improved rechargeable stability for lithium/silver vanadium oxide battery induced via electrospinning technique[J]. J. Mater. Chem. A, 2013, 1(3): 852 | [10] | Xu J, Hu C G, Xi Y, et al.Synthesis and visible light photocatalytic activity of β-AgVO3 nanowires[J]. Solid State Sci ., 2012, 14(4): 535 | [11] | Kittaka S, Matsuno K, Akashi H.Crystal structure of α-AgVO3 and phase relation of AgVO3[J]. J. Solid State Chem ., 1999, 142(2): 360 | [12] | Yu J G, Liu W, Yu H G, et al.A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity[J]. Cryst. Growth Des ., 2008, 8(3): 930 | [13] | Kong X G, Guo Z L, Wen P H, et al.Controllable synthesis and morphology evolution from two-dimensions to one-dimension of layered K2V6O16·nH2O[J]. Cryst Eng Comm, 2015, 17(20): 3777 | [14] | Song J M, Lin Y Z, Yao H B, et al.Superlong β-AgVO3 Nanoribbons: High yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties[J]. ACS Nano, 2009, 3(3): 653 | [15] | Zhang S Y, Li W Y, Li C S, et al.Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures[J]. J. Phys. Chem. B, 2006, 110(49): 24855 | [16] | Bao S J, Bao Q L, Li C M, et al.Synthesis and electrical transport of novel channel-structured β-AgVO3[J]. Small, 2007, 3(7): 1174 | [17] | Liang S Q, Zhou J, Zhang X L, et al.Hydrothermal synthesis of Ag/β-AgVO3 nanobelts with enhanced performance as a cathode material for lithium batteries[J]. Cryst Eng Comm, 2013, 15(46): 9869 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|