Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (7): 527-534    DOI: 10.11901/1005.3093.2019.578
  研究论文 本期目录 | 过刊浏览 |
引入电弧喷涂氮化锆中间层的钛基PbO2的电催化阳极性能
唐长斌1(), 王飞1, 牛浩1, 于丽花1, 薛娟琴1, 尹向阳2
1.西安建筑科技大学冶金工程学院 西安 710055
2.陕西新兴热喷涂技术有限公司 西安 710000
Properties of Ti-based PbO2 Electrocatalytic Anodes with an Arc Sprayed ZrN-interlayer
TANG Changbin1(), WANG Fei1, NIU Hao1, YU Lihua1, XUE Juanqin1, YIN Xiangyang2
1.School of Metallurgy and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2.Shaanxi Xinxing Thermal Spraying Technology Co. Ltd. , Xi'an 710000, China
引用本文:

唐长斌, 王飞, 牛浩, 于丽花, 薛娟琴, 尹向阳. 引入电弧喷涂氮化锆中间层的钛基PbO2的电催化阳极性能[J]. 材料研究学报, 2020, 34(7): 527-534.
Changbin TANG, Fei WANG, Hao NIU, Lihua YU, Juanqin XUE, Xiangyang YIN. Properties of Ti-based PbO2 Electrocatalytic Anodes with an Arc Sprayed ZrN-interlayer[J]. Chinese Journal of Materials Research, 2020, 34(7): 527-534.

全文: PDF(7000 KB)   HTML
摘要: 

在钛基体电弧喷涂氮化锆中间层,然后在其上阳极电沉积涂覆β-PbO2催化表层,制备出Ti/ZrN/PbO2阳极。对其进行微观结构分析和表面粗糙度测试、中间层附着力评价、电极加速寿命和电化学性能测试以及电氧化苯酚模拟废水实验,并与无中间层的Ti/PbO2电极对比,研究了有中间层的钛基PbO2涂层的阳极性能。结果表明,氮化锆中间层使阳极材料的导电性提高,中间层的粗糙表面使PbO2电沉积层明显细化,表面整平性凸显,涂层与基体结合牢固,PbO2沉积厚度增加,活性位点的数量增多。有氮化锆中间层的阳极加速寿命显著延长,比Ti/PbO2电极延长了7倍,对有机污染物的电催化降解活性也有提高。

关键词 材料表面与界面钛基二氧化铅阳极中间层氮化锆电弧喷涂层电化学氧化延寿    
Abstract

The Ti/ZrN/PbO2 electrodes were prepared via an arc spraying ZrN-interlayer on the Ti-substrate and then followed by anodic electrodeposition of β-PbO2 surface coating. By taking the plain Ti/PbO2 electrode as comparison, the prepared electrodes were characterized in terms of microstructure, surface roughness, coating adhesion, accelerated life assessment, electrochemical performance and electro-oxidation of phenol. The results show that the accelerated life-time for Ti/ZrN/PbO2 anodes was obviously prolonged to 8 times of that for the plain Ti/PbO2 electrode. Meanwhile, the electrocatalytic degradation activity of this anode for the organic pollutants was enhanced. This is directly related to the improvement of the conductivity of the electrode brought by the arc sprayed ZrN interlayer and which then enables the layer of electrodeposited PbO2 to be significantly refined and thicker with much flat surface and better adhesive to the substrate, as well as more active sites caused by the rough surface characteristics of this arc spraying intermediate layer.

Key wordssurface and interface in the materials    titanium-based lead dioxide anode    interlayer    zirconium nitride arc spray coating    electro-oxidation    life extension
收稿日期: 2019-12-10     
ZTFLH:  TQ174  
基金资助:国家自然科学基金(51874227);陕西省自然科学基金(2018JM5131);陕西省自然科学基金(2018JM5139)
作者简介: 唐长斌,男,1973年生,博士
图1  用电弧喷涂制备氮化锆中间层的示意图
图2  电弧喷涂制备氮化锆中间层及电沉积PbO2所得涂层电极的结果分析
图3  电极加速寿命试验槽压随时间的变化
ElectrodesPreparation of interlayerTest conditionLife timeRef
Ti/ZrN/PbO2Arc-spraying1 A/cm2, 1 mol/L H2SO4, temperature below 50℃160 hThis paper
Ti/Sb-SnO2/β-PbO2Spray pyrolysis4 A/cm2, 1 mol/L H2SO4,temperature below 60℃30 h[14]
Ti/Ni/β-PbO2Cathodic electroplating1 A/cm2, 1 mol/L H2SO4, temperature below 50℃40 h[15]
Ti/MnO2/β-PbO2Electrodeposition4 A/cm2, 1 mol/L H2SO4, temperature below 60℃47 h[16]
表1  本文的结果与文献报道的含中间层的钛基PbO2电极(加速或服役)寿命对比
图4  Ti/ZrN/PbO2电极的电催化活性位点测试和析氧反应动力学过程Nyquist谱图
Electrodes

Rs

/Ω·cm2

Qdl

-1cm2·sn

QnRct/Ω·cm2
Ti/PbO25.610.001020.6104175.60
Ti/ZrN/PbO22.050.002570.817449.11
表2  析氧反应EIS阻抗拟合结果
图5  电催化降解苯酚废水时苯酚和COD去除率随时间的变化和动力学拟合对比
TypeElectrodesFitted equationk/min-1R2
COD removalTi/PbO2Y=0.00462X-0.049550.00460.995
Ti/ZrN/PbO2Y=0.0063X-0.038460.00630.992
Phenol degradationTi/PbO2Y=0.01048X+0.048170.0100.985
Ti/ZrN/PbO2Y=0.01789X-0.324430.0180.994
表3  不同电极降解动力学比较
[1] Chen B M, Wang S C, Liu J H, et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc eletrowinning [J]. Corrosion Science, 2018, 144: 136
doi: 10.1016/j.corsci.2018.08.049
[2] He J X, Zhou J C,Chen K N. Electrochemical synthesis of butyl butyrate on conductive oxide electrode [J]. Electrochemistry, 1998,4 (4): 423
[2] (何俊翔, 周锦成, 陈康宁. 导电氧化物电极上丁酸丁酯电化学合成的研究 [J]. 电化学, 1998, 4(4): 423)
[3] Yang W T, Yang W H, Fu F. Preparation and Characterization of PbO2 electrode modified with a mixture of PEG and CPB [J]. Chinese Journal of Materials Research, 2012, 26(1): 8
[3] (杨武涛, 杨卫华, 付芳. PEG/CPB复配改性二氧化铅电极的制备和性能 [J]. 材料研究学报, 2012, 26(1): 8)
[4] Bian X Z, Xia Y, Zhan T T, et al. Electrochemical removal of amoxicillin using a Cu doped PbO2 electrode: Electrode characterization, operational parameters optimization and degradation mech-anism [J]. Chemosphere, 2019, 233: 762
pmid: 31200136
[5] Duan X Y, Zhao C M, Liu W, et al. Fabrication of a novel PbO2 electrode with a graphene nanosheet interlayer for electrochemical oxidation of 2-chlorophenol [J]. Electrochimica Acta, 2017, 240: 424
doi: 10.1016/j.electacta.2017.04.114
[6] Zhao G H, Zhang Y G, Lei Y Z, et al. Fabrication and electrochemical treatment application of a novel lead dioxide anode with superhydrophobic surface, high oxygen evolution potential, and oxidation capability [J]. Environmental science & technology, 2010, 44 (5): 1754
pmid: 20180602
[7] Zhang Z X. Application of titanium coated electrode for forty years [J]. 2007, 26(1): 50
[7] (张招贤. 涂层电极的40年 [J]. 电镀与涂层, 2007, 26(1): 50)
[8] Zhang W L, Kong H S, Lin H B, et al. Fabrication characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate [J]. Journal of Alloys and Compounds, 2015, 650: 705
doi: 10.1016/j.jallcom.2015.07.222
[9] Jiang Y, Hu Z, Zhou Met al. Efficient degradation of p-nitrophenol by electro-oxidation on Fe doped Ti/TiO2 nanotube/PbO2 anode [J]. Separation & Purification Technology, 2014, 128(325): 67
[10] Li X L, Xu H, Yan W. Electrochemical oxidation of aniline by a novel Ti/TiOxHy/Sb-SnO2 electrode [J]. Chinese Journal of Catalysis, 2016, 37(11): 1860
doi: 10.1016/S1872-2067(16)62555-X
[11] Chen B M, Guo Z C, Yang X W, et al. Progress on electrodeposition of doped-PbO2 surface [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(9): 1711
[11] (陈步明, 郭忠诚, 杨显万等. 电沉积掺杂二氧化铅表面的研究进展 [J]. 中国有色金属学报, 2008, 18(9): 1711)
[12] Yang H T, Chen B M, Guo Z C, et al. Effects of current density on preparation and performance of Al/conductive coing/α-PbO2-CeO2-TiO2/β-PbO2-MnO2-WC-ZrO2 composite electrode materials [J]. Transaction of Nonferrous Metals Society of China, 2014: 24(10): 3394
doi: 10.1016/S1003-6326(14)63482-8
[13] Sun F M, Pan J Y, Luo Q F. Preparation and properties of lead dioxide anode with platinum interlayer [J]. Materials Protection, 2006, 39(1): 53
[13] (孙凤梅, 潘建跃, 罗启富. 含铂中间层二氧化铅阳极的制备及其性能 [J]. 材料保护, 2006, 39(1): 53)
[14] Wang Y Q,Gu B,Xu W L,et al. Electrochemical oxidation of Phenol on Ti-Based PbO2 Electrodes [J]. Rare Metal Materials and Engineering, 2007, 36(5): 874
[14] (王雅琼, 顾彬, 许文林等. 钛基PbO2电极上苯酚的电化学氧化 [J]. 稀有金属材料与工程, 2007, 36(5): 874)
[15] Tang C B, Zheng C, Yu L H, et al. Effect of electroplating nickel inter-layer on performance of Ti-based lead dioxide electrodes [J]. Rare Metal Materials and Engineering, 2019, 48(1): 143
[15] (唐长斌, 郑超, 于丽花等. 电镀镍中间层对钛基二氧化铅阳极性能的影响 [J]. 稀有金属材料与工程, 2019, 48(1): 143)
[16] Xu L, Zhao F, Nong J Y, et al. Preparation, characterization and electro-catalytic properties investigation of lead dioxide electrode [J]. Chinese Journal of Environmental Engineering, 2008, 2(7): 97
[16] (徐亮, 赵芳, 农佳莹等. 二氧化铅电极的制备、表征及其电催化性能研究 [J]. 环境工程学报, 2008, 2(7): 97)
[17] Liang Y J, Che M C. Handbook of Thermodynamics of Inorganic Materials [M]. Shen Yang: Northeast University Press, 1993
[17] (梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993)
[18] Sirés I., Low C. T. J., Ponce-de-León C., et al. The characterisation of PbO2-coated electrodes prepared from aqueous methanesulfonic acid under controlled deposition conditions [J]. Electrochimica Acta, 2010, 55(6): 2163
doi: 10.1016/j.electacta.2009.11.051
[19] Xia Y, Dai Q, Chen J. Electrochemical degradation of aspirin using a Ni doped PbO2 electrode [J]. Journal of Electroanalytical Chemistry, 2015, 744: 117
doi: 10.1016/j.jelechem.2015.01.021
[20] Li X, Xu H, Yan W. Effects of twelve sodium dodecyl sulfate (SDS) on electro-catalytic performance and stability of PbO2, electrode [J]. Journal of Alloys and Compounds, 2017, 718: 386
doi: 10.1016/j.jallcom.2017.05.147
[21] Song S, Fan J, He Z, et al. Electrochemical degradation of azo dye C. I. Reactive Red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes [J]. Electrochimica Acta, 2010, 55(11): 606
[22] Amado-Piña Deysi, Roa-Morales Gabriela, Barrera-Díaz Carlos, et al. Synergic effect of ozonation and electrochemical methods on oxidation and toxicity reduction: Phenol degradation [J]. Fuel, 2017, 198: 82
doi: 10.1016/j.fuel.2016.10.117
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[11] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[12] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[13] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[14] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[15] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.